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PART ONE: THE PHENOMENON OF CONDENSATION




AN EXPERIMENTAL EXAMPLE

Steinhauer et al, PRL 109, 195301 (2012)
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m V is an external trapping potential;
m Global U(1) symmetry: 1) — ™),
= —0ip = V - J on classical solutions, where
p = |tp|? is the particle density
1
J = —@*"V¢ — V") is the particle current
2im
N = /d3a:p is the number of particles.
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Field variables: 1, 1*. Canonically conjugated momentum:
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Euler-Lagrange equation:
1
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How TO DESCRIBE AN IDEAL BOSE GAS?

For the ideal Bose gas, Bose-Einstein condensation occurs when Ny /N ~ 1.

This can happen when p ~ . = wp:

- T
N — Ny V22 ¢(3)

Wy

Nog=0= T, = (Nwmwyw./C(3)/3

Typical values: T, = 60 nK for N = 1000 and w = 100 Hz.




How TO DESCRIBE AN IDEAL BOSE GAS?

Dalfovo et al, Rev. Mod. Phys. 71, 463 (1999)
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m When N — oo and T' — 0, if |[N) is the system ground state,
40lN) = VNIN — 1) ~ VNN)

|N) is a coherent state!

= ag = \/N
P(t,x) = VNeo(t,x) + ip(t, x).

m How to justify the thermodynamic limit in the ideal gas model?

m For non-ideal gases,
1 3,.33..7 / /
Hipy = 5 d’zd’z p(t’ X)U(X’ X )p(ta X )
Typical values of Ny are between 1000 and 5000 (why?)!
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m For dilute systems, the s-wave approximation: U(x,x’) = gd(x — x’)
m g is proportional to the scattering length.

m The corresponding field equation is known as the Gross-Pitaevskii (GP) equation:

i) = (—;nw LV +g|¢|2> v

In the Madelung representation: ¢ = ﬁeie
—O0p=V-(pv)

1 V2
(8t+v-V)v:—V<V+gp— \/ﬁ>,

where v = V0 in the fluid velocity.




PART TWO: CONDENSATE “ENVIRONMENT”




Steinhauer et al, PRL 109, 195301 (2012)
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BoGoLIUBOV THEORY

m Heisenberg equation:
. n o - 1 2 AT > ~
10 = — Vo + Vgl | .
2m

m Bogoliubov expansion (1947):
W =Py + 09
o is the order parameter, and (51& a “small” perturbation.
m CCR:
[03)(t, x), 69T (t,x')] = d(x — x)

m 01 satisfies the Bogoliubov-de Gennes equation:
. 1 . .
10,0 = <—2mv2 +V+ 2gwo\2> 0 + gugoy’
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The particle densities become:

p = (Y1) = [vol* + (50T0¢) = po + dp

| R 1 . .

J=_—@Vi—Hec)=Jg+ ——(09Vd) — He) = Jo + 0T
2im 2im

m §p is the quantum depletion.

m §J is the phonon flux.

m Depletion exists even at T' = 0. Liquid *He, Ny /N = 0.1 [Taylor et al, PRB 84, 184506
(2011)]

m Bogoliubov expansion breaks the U (1) symmetry: —0;6p # V - §J




CONSEQUENCES OF THE BoGoLIUBOV THEORY: QUANTUM DEPLETION

week ending

PRL 119, 190404 (2017) PHYSICAL REVIEW LETTERS 10 NOVEMBER 2017

£

Quantum Depletion of a Homogeneous Bose-Einstein Condensate

Raphael Lopcs,l’* Christoph Eigcn,l Nir Navon,l’2 David Clémcnt,3 Robert P. Smith,l and Zoran Hadzibabic'
'Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 OHE, United Kingdom
2Deparrmenr of Physics, Yale University, New Haven, Connecticut 06511, USA
3Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Université Paris-Saclay,

91127 Palaiseau cedex, France
(Received 12 June 2017; published 7 November 2017)

We measure the quantum depletion of an interacting homogeneous Bose-Einstein condensate and
confirm the 70-year-old theory of Bogoliubov. The observed condensate depletion is reversibly tunable by
changing the strength of the interparticle interactions. Our atomic homogeneous condensate is produced
in an optical-box trap, the interactions are tuned via a magnetic Feshbach resonance, and the condensed
fraction is determined by momentum-selective two-photon Bragg scattering.

DOI: 10.1103/PhysRevLett.119.190404
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“Quantum” Madelung:

. G040 N R T
=10 + 09 = T py 1+ 3p = 60 = f -2
0 0
m (602) diverges with t2 in interacting condensates:

PHYSICAL REVIEW
LETTERS

VOLUME 77 21 OCTOBER 1996 NUMBER 17

Quantum Phase Diffusion of a Bose-Einstein Condensate

M. Lewenstein' and L. You?
| Commissariat a I'Energie Atomique, DSM/DRECAM/SPAM, Centre d’Etudes de Saclay, 91191, Gif-sur-Yvette, France
2nstitute for Theoretical Atomic and Molecular Physics, Harvare Center for 3
60 Garden Street, MS 14, Cambridge, Massachusetts 02138
(Received 20 May 1996)

‘We discuss the quantum properties of the Bose-Einstein condensate of a dilute gas of atoms in a trap.
‘We show that the phase of the condensate undergoes quantum diffusion which can be detected in far
fF- light scattering experiments. [S0031-9007(96)01469-X]
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PHYSICAL REVIEW A VOLUME 57. NUMBER 4

Low-temperature Bose-Einstein condensates in time-dependent traps:
Beyond the U7(1) symmetry-breaking approach

Y. Castin and R. Dum
Ecole Normale Supérieure, Laboratoire Kastler Brossel, 24, Rue Lhomond, F-75231 Paris Cedex 05, France
(Received 25 February 1997: revised manuscript received 7 October 1997)

We present a method to calculate the dynamics of very-low-temperature Bose-Einstein condensates in
time-dependent traps. We consider a system with a well-defined number of particles. rather than a system in a
coherent state with a well-defined phase. This preserves the U(1) symmetry of the problem. We use a
systematic asymptotic expansion in the square root of the fraction of noncondensed particles. In lowest order
we recover the time-dependent Gross-Pitaevskii equation for the condensate wave function. The next order
gives the linear dynamics of noncondensed particles. The higher order gives corrections to the time-dependent
Gross-Pitaevskii equation including the effects of noncondensed particles on the condensate. We compare this
method with the Bogoliubov—de Gennes approach.

[S1050-2947(98)00604-0]

APRIL 1998
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PHYSICAL REVIEW A VOLUME 57. NUMBER 4 APRIL 1998

Low-temperature Bose-Einstein condensates in time-dependent traps:
Beyond the U7(1) symmetry-breaking approach

Y. Castin and R. Dum
Ecole Normale Supérieure, Laboratoire Kastler Brossel, 24, Rue Lhomond, F-75231 Paris Cedex 05, France
(Received 25 February 1997: revised manuscript received 7 October 1997)

We present a method to calculate the dynamics of very-low-temperature Bose-Einstein condensates in
time-dependent traps. We consider a system with a well-defined number of particles. rather than a system in a
coherent state with a well-defined phase. This preserves the U(1) symmetry of the problem. We use a
systematic asymptotic expansion in the square root of the fraction of noncondensed particles. In lowest order
we recover the time-dependent Gross-Pitaevskii equation for the condensate wave function. The next order
gives the linear dynamics of noncondensed particles. The higher order gives corrections to the time-dependent
Gross-Pitaevskii equation including the effects of noncondensed particles on the condensate. We compare this
method with the Bogoliubov—de Gennes approach.

[S1050-2947(98)00604-0]

S. M. Barnett: “The robust description of the condensate, therefore, is that of a coherent-like
state undergoing phase diffusion.”
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CONSEQUENCES OF THE BoGOLIUBOV THEORY: QUANTUM BACKREACTION

m Interactions lead to condensate degradation.
m Atoms may enter or leave the condensate
m The depleted cloud still interact with the condensate

Is the condensate evolution ruled by Euler equations?
We should consider quantum corrections!
Fischer et al, PRD 72, 105005 (2005): —0;,p = V - J and

2
(8t+v-V)v:—V<V+gp—1v \/ﬁ> +(;2

m Q depends only on 5.



CONSEQUENCES OF THE BoGOLIUBOV THEORY: QUANTUM BACKREACTION

0.3

—_— (5 -] (a)

Px Tt P¢

—_— (5 mmm—te] /

0.1+

-0.1

Iy,
0o fmEommass \ /\II N

—_—— =] =——=t—5

0.3 L L
5 10 15 20

Baak et al, PRA 106, 053319 (2022)




PART THREE: ANALOG HAWKING RADIATION




HAWKING RADIATION

Let us consider the problem of probing Hawking radiation.




HAWKING RADIATION

Let us consider the problem of probing Hawking radiation.

m Ty ~ 1078 K for a black hole of one solar mass




HAWKING RADIATION

Let us consider the problem of probing Hawking radiation.

m Ty ~ 1078 K for a black hole of one solar mass
m CMB radiation ~ 2.7 K




HAWKING RADIATION

Let us consider the problem of probing Hawking radiation.
m Ty ~ 1078 K for a black hole of one solar mass
m CMB radiation ~ 2.7 K

PHYSICAL REVIEW
LETTERS

VoLuMme 46 25 MAY 1981 Numser 21

Experimental Black-Hole Evaporation?

W. G. Unruh
Department of Physics, University of British Columbia, Vancouver, Byitish Columbia V6T 2A6, Canada
(Received 8 December 1980)

It is shown that the same arguments which lead to black-hole evaporation also predict
that a thermal spectrum of sound waves should be given out from the sonic horizon in
transsonic fluid flow.
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Dalfovo et al, Rev. Mod. Phys. 71, 463 (1999):

“In the presence of harmonic confinement,
the many-body theory of interacting Bose
gases gives rise to several unexpected
features. This opens new theoretical
perspectives in this interdisciplinary field,
where useful concepts coming from different
areas of physics (atomic physics, quantum
optics, statistical mechanics, and
condensed-matter physics) are now merging
together”

Class. Quantum Grav. 15 (1998) 1767-1791. Printed in the UK PIL: $0264-9381(98)90306-9

Acoustic black holes: horizons, ergospheres and Hawking
radiation

Matt Visserf
Physics Department. Washington University. Saint Lowis, MO 63130-4899, USA

Recerved 1 December 1997

Abstract. It is a deceptively simple question to ask how acoustic disturbances propagate
in a non-homogencous flowing fluid. Subject to suitable restrictions. this question can be
answered by invoking the language of Lorentzian differential geometry. This paper begins
with a pedagogical derivation of the following result: if the fluid is barotropic and inviscid, and
the flow is irrotational (though possibly time dependent), then the equation of motion for the
velocity potential describing a sound wave is identical to that for a minimally coupled massless
scalar field propagating in a (3 + 1)-dimensional Lorentzian geometry

1
Ay = ﬁa“ (V=gg"" ap)=0.




ANALOG HAWKING RADIATION

Dalfovo et al ReV Mod Phys 7] 463 (‘1999) Class. Quantum Grav. 15 (1998) 1767-1791. Printed in the UK PIL: $0264-9381(98)90306-9
s . . . s :
43 . .
In the presence of harmonic confinement,

the many-body theory of interacting Bose
gases gives rise to several unexpected Acoustic black holes: horizons, ergospheres and Hawking
. . radiation
features. This opens new theoretical
perspectives in this interdisciplinary field,
where useful concepts coming from different
areas of physics (atomic physics, quantum
Abstract. Tt is a deceptively simple question to ask how acoustic disturbances propagate

fe) ptics’ Statist i Cal mec han ics’ an d in a non-homogencous flowing fluid. Subject to suitable restrictions, this question can be

answered by invoking the lunguage of Lorentzian differcntial geometry. This paper begins

Matt Visserf
Physics Department. Washington University. Saint Lowis, MO 63130-4899, USA

Recerved 1 December 1997

d d h . . with a pedagogical derivation of the following result: if the fluid is barotropic and inviscid, and
condensed-matter physics) are now merging the fow is arotasonal (tbough possibly e dependent), then the equation of moon for the
5 velocity potential describing a sound wave is identical to that for a minimally coupled massless
scalar field propagating in a (3 + 1)-dimensional Lorentzian geometry
together. P
S (VT ) =0,

Note that T,. ~ Ty!
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Suppose one can implement an analog black hole using a BEC. How to probe the
spontaneous radiation?

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 78, 021603(R) (2008)

Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes

Roberto Balbinot,1 Alessandro Fabbri,2 Serena Fa(,;nocchi,l'3 Alessio Recati,* and Tacopo Carusotto”
1Diparrimmn‘a di Fisica dell’Universita di Bologna and INFN Sezione di Bologna, Via Irnerio 46, 40126 Bologna, Italy
ZD(’]N/VI‘{/I?TGIIT() de Fisica Teorica and IFIC, Universidad de Valencia-CSIC, C. Dr. Moliner 50, 46100 Burjassot, Spain

3Centro Studi e Ricerche “Enrico Fermi,” Compendio Viminale, 00184 Roma, Italy
“CNR-INFM BEC Center and Dipartimento di Fisica, Universita di Trento, via Sommarive 14, 1-38050 Povo, Trento, Italy
(Received 13 December 2007; published 19 August 2008)

We have used the analogy between gravitational systems and nonhomogeneous fluid flows to calculate the
density-density correlation function of an atomic Bose-Einstein condensate in the presence of an acoustic black
hole. The emission of correlated pairs of phonons by Hawking-like process results into a peculiar long-range
density correlation. Quantitative estimations of the effect are provided for realistic experimental configurations.
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The density-density correlation is defined as
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For an acoustic BH it should look like: 0-004
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Observation of thermal Hawking radiation and its
temperature in an analogue black hole
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The entropy of a black hole' and Hawking radiation” should have the
same temperature given by the surface gravity, within a numerical
factor of the order of unity. In addition, Hawking radiation should
have a thermal spectrum, which creates an information paradox™*.
However, the thermality should be limited by greybody factors®, at
the very least®. It has been proposed that the physics of Hawking
radiation could be verified in an analogue system’, an idea that has
been carefully studied and developed theoretically®-'8. Classical
white-hole analogues have been investigated experimentally'”-!,
and other analogue systems have been presented”>?*. The theoretical

areal black hole. In a Bose-Einstein condensate, the dispersion relation
is linear in the low-energy limit. Thus, we should create an analogue
black hole with sufficiently low Hawking temperature that the radiation
is in the linear regime of the dispersion relation. We can then test
whether the emitted Hawking radiation obeys the prediction of equa-
tion (1). There are several theoretical works suggesting that this should
be the case. Using previous analytical results for a system similar to this
experiment'?, we find that equation (1) gives an accurate prediction for
kT < 0.14 mcozm, where m is the mass of the atom. We will show that
the experiment is within this limit. Parentani and colleagues® studied
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FINAL REMARKS

Impact of dimension on the condensate dynamics: Hohenberg theorem

Impact of dipolar interactions

m Condensate of composite bosons?

Entanglement

m Measurement-induced phase diffusion
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