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8.1 Introduction

The association between special relativity (SR) and quantum mechanics (QM) was es-
tablished shortly after its inception. In 1926 Schrödinger worked on it [1], followed by
Klein [2], Gordon [3], and Dirac [4], leading to the Klein-Gordon equation for integer
spin particles and the Dirac equation for spin 1/2 particles [5]. The ascent of quantized
fields in the quantum theory and the axiom of the invariance of Lagrangians by Lorentz
transformations followed. However, the purpose of this paper is not to combine non-
relativistic QM with SR. Instead, it aims to present an interesting parallelism between
the SR and QM, at least in the formal realm. A few years ago, researchers studied the
separability-entanglement puzzle of bipartite systems from a new perspective [6, 7]. They
viewed it as a trajectory along a flat Minkowski phase space of compact support, which
is different from the space and time variables of SR that are defined within the domain
(−∞,∞). In those studies, a physical object comprising two qubits was selected, and
its mixed state was represented by a density operator. The theory proposed a construct
that demonstrated similarities to SR, with a Minkowski 4D space constrained into a com-
pact domain. This space allowed for “trajectories” to be drawn through two distinct
regions. One region contained world line trajectories that was denominated “separable-
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like”, alluding to the time-like region of SR, the other one, “entangled-like” alludes to the
space-like.

In paper [6], various physical systems, such those in [8–19], were studied and analyzed.
The trajectories for some of these systems were outlined in the Minkowski phase space.
Based on the chosen parameters of the systems under investigation, it was revealed that
the trajectories that start within the entangled-like region eventually go asymptotically
towards the separable-like one. These trajectories could even cross the “light-like cone”,
for example, beginning as separable, become entangled, become separable again, and so
on for several times.

According to current physical theories, it is impossible for matter or information to
travel faster than the speed of light, which is also known as superluminal (faster-than-
light) or supercausal transmission. Special relativity says that only particles with zero
mass, such as photons and possibly neutrinos, can travel at the speed of light c. Although
superluminal motion of any kind of particle contradicts the theory of relativity, nonethe-
less, in QM some effects suggest otherwise when submitted to sieves. These include
the tunneling effect, the non-local spooky action at a distance [20, 21], and the loss of
entanglement of a bipartite/multipartite system under the influence of the environment.

In this chapter, I briefly review the case of a two-qubit state and draw a formal com-
parison between the SR Minkowski space and the QM compact support Minkowski space,
borrowing the formalism of the former. In SR Minkowski space trajectories represent
physical particles that have mass or are massless. On the other hand, in the QM com-
pact Minkowski space, trajectories only describe separability or entanglement of bipartite
quantum systems, they do not provide any evidence of meaningful information transfer.
I then discuss a closely related issue, the definition and meaning of velocity and speed of
disentanglement for a bipartite system when it evolves over time, transiting from entan-
glement to separability or vice-versa, strangely referred as “sudden death” in [13, 14].

8.2 Space time geometry: brief reminder

The distance between two points in the 3D physical space is expressed as a quadratic
equation in Cartesian coordinates

ds2 = dx2 + dy2 + dz2 = dxigijdx
j (8.1)

where gij = δij specifies the flat Euclidian metric, which is invariant under an orthogonal

transformation R of the coordinates, or rotations in 3D, dx′i = Rikdxk (
(
RT
)li
Rik = δkl),

as ds′2 = RikdxkgijR
jldxl = dxkIkldx

l = ds2, and the unit matrix Ikl = δkl. In special
relativity (SR) the matrix in 4D (3 + 1) that specifies the metric is pseudo-Euclidian, or
hyperbolic,

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (8.2)

where the space-time interval between two events is expressed as a quadratic equation
containing four terms, the quadratic infinitesimal geodesic segment is

ds2 = dx20 − dr⃗ 2 = dx20 − dr⃗ · dr⃗ = c2dt2 − dx2 − dy2 − dz2 = dxµgµνdx
ν (8.3)
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that must be invariant by a space-time transformations: DαµgµνD
νβ = gαβ , with µ, ν,

α, β = 0, 1, 2, 3, where the index 0 is reserved for time.
For a particle traveling along a segment ds one may define a speed that depends on

some internal parameter ϑ,

ug (ϑ) =
ds

dϑ
= +

√(
dx0
dϑ

)2

− dxi
dϑ

dxi
dϑ

(8.4)

If one sets ϑ as time t, then

ug (t) =

√(
cdt

dt

)2

− dxi
dt

dxi
dt

=

√
c2 − dr⃗

dt
· dr⃗
dt

= c

√
1− v⃗2

c2
. (8.5)

As it is assumed axiomatically that a particle running along a geodesic segment has a
positive speed, ug (t) > 0, therefore the particle speed in the 3D should not exceed the
speed of light in vacuum c > v. Nonetheless, from eq. (8.3) the inequality ds2 < 0 is
not ruled out when a particle is assumed to move at virtual superluminal speed, and its
trajectory resides within a region called spacelike.(

ds

dt

)2

=

(
dx0
dt

)2

−
(
dr⃗

dt

)2

= c2 − v⃗2 < 0 .

8.3 The two-qubit state

The most general two-qubit state (pure or mixed after tracing out over a (N-2)D subsys-
tem) in the so-called Fano’s form is

ρ̂ =
1

22

(
11 ⊗ 12 + 11 ⊗ σ⃗2 · P⃗2 + σ⃗1 · P⃗1 ⊗ 12 + σ⃗1 ·

←→
M · σ⃗2

)
(8.6)

where σ⃗ is a vector whose, x, y, and z components are the Pauli matrices σx, σy, and

σz. P⃗k = Tr (σ⃗kρ̂) is a polarization vector (PV) associated to each qubit, k = 1, 2,
←→
M is

a dyadic operator for the correlation matrix

M =

 Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

 , (8.7)

(the subscript on the left stands for qubit 1 and the other for qubit 2) with entries
Mij = ⟨σ1,iσ2,j⟩ = Tr (ρ̂σ1,iσ2,j) and |Mij | ≤ 1. A separable two-qubit state has the

following properties: (a) the PV’s are written as P⃗µ =
∑

k pkQ⃗
(k)
µ , where Q⃗

(k)
µ (µ = 1, 2)

is a vector,
∣∣∣Q⃗(k)

µ

∣∣∣ ≤ 1, the superscript k characterizes a direction in 3D and, (b) the

dyadic could be
←→
M =

∑
k pkQ⃗

(k)
1 Q⃗

(k)
2 , with weights pk ∈ [0, 1] and

∑
k pk = 1, the state

(8.6) becomes

ρ̂sep =
1

4

∑
k

pk

(
11 + Q⃗

(k)
1 · σ⃗1

)
⊗
(
12 + Q⃗

(k)
2 · σ⃗2

)
, (8.8)

thus, in this state the qubits are not entangled.
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8.3.1 Polarization vectors and correlation matrix

The state (8.6) can also be displayed [6, 7] as a matrix,

ρ̂ =
1

4


1 + P1,z + P2,z +Mzz P2,x − iP2,y +Mzx − iMzy

P2,x + iP2,y +Mzx + iMzy 1 + P1,z − P2,z −Mzz

P1,x + iP1,y +Mxz + iMyz Mxx +Myy − i (Mxy −Myx)
Mxx −Myy + i (Mxy +Myx) P1,x + iP1,y −Mxz − iMyz

P1,x − iP1,y +Mxz − iMyz Mxx −Myy − i (Mxy +Myx)
Mxx +Myy + i (Mxy −Myx) P1,x − iP1,y −Mxz + iMyz

1− P1,z + P2,z −Mzz P2,x − iP2,y −Mzx + iMzy

P2,x + iP2,y −Mzx − iMzy 1− P1,z − P2,z +Mzz

 , (8.9)

that depends on fifteen free parameters, with the constraint Tr (ρ̂)
2 ≤ 1. The polarization

vectors are

P1 =
(
P1,x P1,y P1,z

)⊺
=
(
2ℜ (ρ13 + ρ24) −2ℑ (ρ13 + ρ24) 2 (ρ11 + ρ22)− 1

)⊺
(8.10a)

P2 =
(
P2,x P2,y P2,z

)⊺
=
(
2ℜ (ρ12 + ρ34) −2ℑ (ρ12 + ρ34) 2 (ρ11 + ρ33)− 1

)⊺
,

(8.10b)

the superscript ⊺ stands for transposed and matrix (8.7) is

M =

 2ℜ (ρ14 + ρ23) 2ℑ (ρ23 + ρ41) 2ℜ (ρ13 − ρ24)
2ℑ (ρ41 + ρ32) 2ℜ (ρ23 − ρ14) 2ℑ (ρ24 − ρ13)
2ℜ (ρ12 − ρ34) 2ℑ (ρ34 − ρ12) 1− 2 (ρ22 + ρ33)

 . (8.11)

The reduced density matrix for each qubit only depends on its own polarization vector

Tr2 (ρ̂) = ρ̂(1) =

(
ρ11 + ρ22 ρ13 + ρ24
ρ31 + ρ42 ρ33 + ρ44

)
=

1

2

(
1 + P1,z P1,x − iP1,y

P1,x + iP1,y 1− P1,z

)
Tr1 (ρ̂) = ρ̂(2) =

(
ρ11 + ρ33 ρ12 + ρ34
ρ21 + ρ43 ρ22 + ρ44

)
=

1

2

(
1 + P2,z P2,x − iP2,y

P2,x + iP2,y 1− P2,z

)
or, ρ̂(k) = 1

2

(
1̂ + σ⃗k · P⃗k

)
, k = 1, 2 with

∣∣∣P⃗k

∣∣∣ ≤ 1, correlation of one qubit with its partner

does not show up.

8.3.2 Positivity Partial Transposition (PPT)

Making use of a specific local operation on each qubit in (8.9), a new matrix, ρ̂T2 , comes
out, and the Peres-Horodecki criterion (PHC) [8, 9] permits to identify an entangled
state whenever the matrix has at least one negative eigenvalue; it hints that the qubits
bear some degree of entanglement. The PHC is based on a positive partial transposition
(PPT) operation, which consists in making a transposition on only one qubit in the
original matrix, and to then analyze the positivity the eigenvalues. Symbolically, ρ̂T =(
1̂1 ⊗ T̂2

)
ρ̂ ≥ 0, where T̂2 stands for the transposition operation on particle 2. For

instance, partitioning matrix (8.9) into four 2 × 2 sub-blocks, the transposition is done
on the diagonal entries within each sub-block, ρ12 ⇄ ρ21, ρ14 ⇄ ρ23, ρ32 ⇄ ρ41, ρ34 ⇄
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ρ43, which is a positive map but not completely positive and for that reason it provides
a necessary and sufficient condition test for separability, as pointed in [8, 9]. Thence
it becomes possible to characterize the separability (or entanglement) in ρ̂ using this
procedure.

The exchange of position entries in matrix ρ̂, expressed in the computational basis,
results in matrix ρ̂T , entailing the following changes in the polarization vector P⃗2 for qubit
2, and also in the correlation matrix (8.7),

P2,y −→ −P2,y, (8.13a)

(Mxy,Myy,Mzy) −→ − (Mxy,Myy,Mzy) , (8.13b)

P⃗2 is substituted by a vector which has undergone a partial reflexion operation, the mirror
image reflected by the x−z plane, and the same operation applies to the entries of matrix
(8.7), where the second subscript y refers to qubit 2. Hence,

P2 −→ PT
2 =

(
P2,x −P2,y P2,z

)T
, (8.14)

and (8.7) become

M −→MT =

 Mxx −Mxy Mxz

Myx −Myy Myz

Mzx −Mzy Mzz

 . (8.15)

The maps (8.13) cannot be obtained by an unitary transformation, they correspond to a
reflection of the Pauli vector σ⃗2 by the plane x−z in R3 space. If one considers ρ̂ containg
information about the physical reality, ρ̂T stands for the complementary partially hidden
reality.

8.3.3 D − 7 manifold class matrix with seven free parameters

If one particularizes matrix (8.9) as a one that contains seven free parameters, instead
of (8.9) that has fifteen, in the D-7 manifold class the description of entanglement and
separability become more prominent. Admitting the PV’s aligned along the z-direction
Pk =

(
0 0 Pk,z

)⊺
, k = 1, 2, and reducing the number of non-null entries (free pa-

rameters) in the CM to five,

M =

 Mxx Mxy 0
Myx Myy 0
0 0 Mzz

 . (8.16)

one gets matrix

ρ̂ =
1

4


1 + P1,z + P2,z +Mzz 0

0 1 + P1,z − P2,z −Mzz

0 Mxx +Myy + i (Myx −Mxy)
Mxx −Myy + i (Myx +Mxy) 0

0 Mxx −Myy − i (Myx +Mxy)
Mxx +Myy − i (Myx −Mxy) 0

1− P1,z + P2,z −Mzz 0
0 1− P1,z − P2,z +Mzz

 . (8.17)
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Henceforth, the set of seven free parameters can now combined to define eight new pa-
rameters

t± =
1±Mzz

2
, u± =

P1,z ± P2,z

2
, (8.18a)

v± =
Mxx ±Myy

2
, w± =

Myx ±Mxy

2
. (8.18b)

(the digit 1 in t± completes the set). The eigenvalues of matrix (8.17) are

λ1 = (t− +X1) /2, λ2 = (t− −X1) /2, λ3 = (t+ +X2) /2, λ4 = (t+ −X2) /2, (8.19)

where

X2
1 = u2− + v2+ + w2

− and X2
2 = u2+ + v2− + w2

+, (8.20)

are specific quadratic distances in 3D under the Euclidean metric. According to the
Peres-Horodecki criterion, the partial transposition on qubit 2 is equivalent in making
the following changes

(t±, u±, v±, w±)→ (t±, u±, v∓, w∓) (8.21)

and the eigenvalues of the partially transposed matrix ρ̂T are

λT1 =
(
t− +XT

1

)
/2, λT2 =

(
t− −XT

1

)
/2, λT3 =

(
t+ +XT

2

)
/2, λT4 =

(
t+ −XT

2

)
/2,
(8.22)

where, differently from the quadratic forms (8.20), one has(
XT

1

)2
= u2− + v2− + w2

+, and
(
XT

2

)2
= u2+ + v2+ + w2

−. (8.23)

Comparing Eqs. (8.23) with Eqs. (8.20), one observes that only parameters v and w

have their subscripts signs, + and −, interchanged. The set of eigenvalues
{
λTi

}
can be

obtained directly from the set {λi} after doing the changes P2,y → −P2,y and Mky →
−Mky (k = x, y, z) or equivalently, {v±, w±} → {v∓, w∓}.

Quadratic distance in a 4D Minkowski geometry

The quadratic distances associated with ρ̂ and ρ̂T are defined as

s21 = t2− −
(
u2− + v2+ + w2

−
)
= t2− − r⃗21 = t2− −X2

1 (8.24a)(
sT1
)2

= t2− − u2− − v2− − w2
+ = t2− −

(
r⃗T1
)2

= t2− −
(
XT

1

)2
, (8.24b)

s22 = t2+ − u2+ − v2− − w2
+ = t2+ − r⃗22 = t2+ −X2

2 , (8.24c)(
sT2
)2

= t2+ − u2+ − v2+ − w2
− = t2+ −

(
r⃗T1
)2

= t2+ −
(
XT

1

)2
, (8.24d)

furthermore, the invariance s21+ s
2
2 =

(
sT1
)2

+
(
sT2
)2

is verified, although each term in the
left hand side is non-negative, whereas on the right hand side one of the terms can be
negative, which becomes the flag that reveals the existence of entanglement.
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Partial positivity conditions

The eigenvalues take values in the interval [0, 1], and the following inequalities hold

λ1λ2 = s21 ≡ t2− −X2
1 ≥ 0 , λ3λ4 = s22 ≡ t2+ −X2

2 ≥ 0. (8.25a)

λT1 λ
T
2 =

(
sT1
)2 ≡ t2− − (XT

1

)2 ≥ 0 , λT3 λ
T
4 =

(
sT2
)2 ≡ t2+ − (XT

2

)2 ≥ 0, (8.25b)

and, in analogy to SR, one is tempted to consider the parameters t±, as “times” whereas
{u±, v±, w±} get the role of distances in 3D Euclidean space. By its turn sk become
the quadridistance in Minkowski space in 4D. Although that admittance remits to SR,
nonetheless, differently from it, the manifold has compact support, s2i ∈ [0, 1]. In what
follows, using the lexicon of SR, we can say that s21 and s22 are time-like. The quadratic
distances (8.25a) are always non-negative, they do not provide information about the
qubits separability or entanglement.

For the PT state ρ̂T one has the similar inequalities (8.25b) that could reveal, under
the PHC, whether, hidden in ρ̂, the qubits are entangled. Nonetheless the inequalities
(8.25b) are quite different from (8.25a). If the qubits are, in some degree, entangled
for some set of numerical values of the intrinsic parameters of the system, then, one

of the quadratic quadridistances (
(
sT1
)2

or
(
sT2
)2
) will result negative, and according to

the SR terminology it it is said to be “space-like”. Thence, using an adjusted lexicon,
it can be said that the squared quadridistance in (8.25b) stem into the separable-like

region whenever
(
sT1
)2
> 0 and

(
sT2
)2
> 0, or into the entangled-like whenever one of

the quadratic distances in (8.25b takes a negative value,
(
sT1
)2

> 0 and
(
sT2
)2

< 0, or(
sT1
)2
< 0 and

(
sT2
)2
> 0 ). The equality

(
sTk
)2

= 0 stands for the border of separability,
which corresponds to the light-like cone surface of SR.

Furthermore, since (s1)
2
= 4λ1λ2, and (s2)

2
= 4λ3λ4, as well as

(
sT1
)2

= 4λT1 λ
T
2 , and(

sT2
)2

= 4λT3 λ
T
4 , the quadratic distances are invariant under similarity transformations

applied on states ρ̂ and ρ̂T .

8.4 Velocity of disentanglement

The quadridistances in Eqs. (8.24) are related to matrix (8.17) entries

s1 =⇒ (t−, u−, v+, w−) =

(
1−Mzz

2
,
P1,z − P2,z

2
,
Mxx +Myy

2
,
Myx −Mxy

2

)
,

s2 =⇒ (t+, u+, v−, w+) =

(
1 +Mzz

2
,
P1,z + P2,z

2
,
Mxx −Myy

2
,
Myx +Mxy

2

)
,

sT1 =⇒ (t−, u−, v−, w+) =

(
1−Mzz

2
,
P1,z − P2,z

2
,
Mxx −Myy

2
,
Myx +Mxy

2

)
,

sT2 =⇒ (t+, u+, v+, w−) =

(
1 +Mzz

2
,
P1,z + P2,z

2
,
Mxx +Myy

2
,
Myx −Mxy

2

)
,

and the elements of the sets (t−, u−, v+, w−) and (t+, u+, v−, w+) may depend, intrin-
sically, on the physical system parameters present in the Hamiltonian or in the density
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operator. Two “velocities”in 3D can be defined,

V⃗1 =
dX⃗1

dt−
=

(
du−
dt−

,
dv+
dt−

,
dw−

dt−

)
(8.27a)

V⃗2 =
dX⃗2

dt+
=

(
du+
dt+

,
dv−
dt+

,
dw+

dt+

)
. (8.27b)

A dynamical system has time t (the one measured by clocks) as natural parameter. Thus,
for all other parameters fixed, one should express the vectors (8.27) as(

du−
dt−

,
dv+
dt−

,
dw−

dt−

)
=⇒

(
∂u−/∂t

∂t−/∂t
,
∂v+/∂t

∂t−/∂t
,
∂w−/∂t

∂t−/∂t

)
fixed parameters

, (8.28a)(
du+
dt+

,
dv−
dt+

,
dw−

dt+

)
=⇒

(
∂u+/∂t

∂t+/∂t
,
∂v−/∂t

∂t+/∂t
,
∂w+/∂t

∂t+/∂t

)
fixed parameters

. (8.28b)

and the speeds are

V1 =
∣∣∣V⃗1∣∣∣ = ((du−

dt−

)2

+

(
dv+
dt−

)2

+

(
dw−

dt−

)2
)1/2

(8.29a)

V2 =
∣∣∣V⃗2∣∣∣ = ((du+

dt+

)2

+

(
dv−
dt+

)2

+

(
dw+

dt+

)2
)1/2

. (8.29b)

Each speed V1 (V2) (for each set of internal parameter) can be plotted in parametric form
V1 (t)× t− (t) and V2 (t)× t+ (t). In Minkowski 4D space the quadrispeeds are

W1 =
ds1
dt−

=
√
1− V 2

1 > 0, (8.30a)

W2 =
ds2
dt+

=
√
1− V 2

2 > 0 (8.30b)

and whenever V 2
1 , V

2
2 < 1 number 1 becomes the maximum speed value, the equivalent

to c, the speed of light in vacuum.
The same goes for PT matrix, the “velocities”are

V⃗ T
1 =

dX⃗T
1

dt−
=

(
du−
dt−

,
dv−
dt−

,
dw+

dt−

)
, (8.31a)

V⃗ T
2 =

dX⃗T
2

dt+
=

(
du+
dt+

,
dv+
dt+

,
dw−

dt+

)
, (8.31b)

and the speeds are

V T
1 =

∣∣∣V⃗ T
1

∣∣∣ = ((du−
dt−

)2

+

(
dv−
dt−

)2

+

(
dw+

dt−

)2
)1/2

, (8.32a)

V T
2 =

∣∣∣V⃗ T
2

∣∣∣ = ((du+
dt+

)2

+

(
dv+
dt+

)2

+

(
dw−

dt+

)2
)1/2

. (8.32b)
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In Minkowski 4D space,

(
WT

1

)2
=

(
dsT1
dt−

)2

= 1−
(
V T
1

)2
=⇒ dsT1

dt−
=

√
1−

(
V T
1

)2
(8.33a)

(
WT

2

)2
=

(
dsT2
dt+

)2

= 1−
(
V T
2

)2
=⇒ dsT2

dt+
=

√
1−

(
V T
2

)2
. (8.33b)

Factually, the sets (t−, u−, v−, w+) and (t+, u+, v+, w−) depend on the parameters of the
system, and for a system evolving in time t should be considered. The equivalent to Eqs.
(8.28) are(

du−
dt−

,
dv−
dt−

,
dw+

dt−

)T

=⇒
(
∂u−/∂t

∂t−/∂t
,
∂v−/∂t

∂t−/∂t
,
∂w+/∂t

∂t−/∂t

)T

fixed parameters

. (8.34a)(
du+
dt+

,
dv+
dt+

,
dw−

dt+

)T

=⇒
(
∂u+/∂t

∂t+/∂t
,
∂v+/∂t

∂t+/∂t
,
∂w−/∂t

∂t+/∂t

)T

fixed parameters

. (8.34b)

For each speed V1, V2, the plot can be done as V T
1 × t− and V T

2 × t+ or else, in parametric
form V T

1 (t)× t− (t) and V T
2 (t)× t+ (t).

8.5 The Blank-Exner-Werner state

I shall illustrate now the main point of the chapter, namely, how to calculate the speed
of disentanglement? To simplify the calculations I borrowed the Blank-Exner-Werner
(BEW) [10, 11] state, where the polarization vector and the correlation matrix entries
depend only on a single parameter – see the Table bellow.

State P1,z P2,z Mxx Myy Mxy Myx Mzz

WBE 0 0 −x −x 0 0 −x

The state is a mixture of a 2-qubit state (two spin-1/2 singlet state)
∣∣ψ−

〉
balanced with

a total stochastic state I,

ρ̂ (x) = x
∣∣ψ−

〉 〈
ψ−
∣∣+ 1− x

4
I , (8.35)

where the parameter x ∈ [0, 1] is a weight (or probability). In the computational basis
the stochastic state is

I = |00⟩ ⟨00|+ |11⟩ ⟨11|+ |01⟩ ⟨01|+ |10⟩ ⟨10| (8.36)

where the vectors |00⟩ ⟨00|, |11⟩ ⟨11| belong to the “spin-1” triplet, whereas the states∣∣ψ±
〉
=
|01⟩ ± |10⟩√

2
, (8.37)

with subscript + it represents the zero-projection state of the triplet and the sign − labels
the singlet state. Inverting the nomenclature

{∣∣ψ−
〉
,
∣∣ψ+

〉}
=⇒ {|01⟩ , |10⟩}, one has

|01⟩ =
∣∣ψ−

〉
+
∣∣ψ+

〉
√
2

, |10⟩ =
∣∣ψ+

〉
−
∣∣ψ−

〉
√
2

. (8.38)
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The outer products are,∣∣ψ±
〉 〈
ψ±
∣∣ = 1

2
(|01⟩ ⟨01|+ |10⟩ ⟨10| ± (|01⟩ ⟨10|+ |10⟩ ⟨01|)) , (8.39)

such that

|01⟩ ⟨01| =
1

2

(∣∣ψ−
〉 〈
ψ−
∣∣+ ∣∣ψ+

〉 〈
ψ+

∣∣+ ∣∣ψ−
〉 〈
ψ+

∣∣+ ∣∣ψ+

〉 〈
ψ−
∣∣) (8.40a)

|10⟩ ⟨10| =
1

2

( ∣∣ψ+

〉 〈
ψ+

∣∣+ ∣∣ψ−
〉 〈
ψ−
∣∣− ∣∣ψ+

〉 〈
ψ−
∣∣− ∣∣ψ−

〉 〈
ψ+

∣∣) . (8.40b)

Summing the above terms one gets

|01⟩ ⟨01|+ |10⟩ ⟨10| =
∣∣ψ−

〉 〈
ψ−
∣∣+ ∣∣ψ+

〉 〈
ψ+

∣∣ , (8.41)

reminding that

|01⟩ = |0⟩1 ⊗ |1⟩2 ; |01⟩ ⟨01| = (|0⟩1 ⊗ |1⟩2) (1 ⟨0| ⊗ 2 ⟨1|) .

Writing the outer products in a blend of both basis one gets

ρ̂ (x) = x
∣∣ψ−

〉 〈
ψ−
∣∣+ 1− x

4

(
|00⟩ ⟨00|+ |11⟩ ⟨11|+

∣∣ψ−
〉 〈
ψ−
∣∣+ ∣∣ψ+

〉 〈
ψ+

∣∣)
=

(
3x+ 1

4

) ∣∣ψ−
〉 〈
ψ−
∣∣+ 1− x

4

(∣∣ψ+

〉 〈
ψ+

∣∣+ |00⟩ ⟨00|+ |11⟩ ⟨11|)︸ ︷︷ ︸
triplet

(8.42)

therefore ρ̂ (1) =
∣∣ψ−

〉 〈
ψ−
∣∣, ρ̂ (0) = I/4.

The state

ρ̂ (x) =

4∑
i=1

wi (x) |ϕi⟩ ⟨ϕi| ,

where wi (x) ∈ [0, 1], does not contain a clue about the location of a geometric border
that separates the region of separable qubits states from the entangled.

The parameter x can be also interpreted as the intrinsic time evolution of the system
which was initially prepared in the pure singlet state

∣∣ψ−
〉 〈
ψ−
∣∣ and, by interacting with

a specific environment, it evolves and finally attain, asymptotically, the stochastic state
I. Assuming that T is a characteristic time of the system, one possibility is to relate x
to time t as x (t) = exp (−t/T ), thus x (0) = 1 and limt→∞ x (t) = 0.

In Fano’s representation, BEW state has no polarization as P1,z = P2,z = 0, it only has
non-null diagonal entries in the correlation matrix, that are degenerated, Mxx = Myy =
Mzz = −x, thence the former seven possible “free parameters” are reduced to only one(

P1,z P2,z Mxx Myy Mzz Mxy Myx

)
=
(
0 0 −x −x −x 0 0

)
.

(8.43)
In matrix form, the 2-qubit system state (8.35) is

ρ̂ (x) =
1− x
4

I ⊗ I + x

4
(σz ⊗ σ̄z − σx ⊗ σx − σy ⊗ σy) (8.44a)

=
1

4
(I ⊗ I + xσz ⊗ σ̄z)−

x

4
(σx ⊗ σx + σy ⊗ σy) (8.44b)

=
1

4


1− x 0 0 0
0 1 + x −2x 0
0 −2x 1 + x 0
0 0 0 1− x

 (8.44c)
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the σ’s are the Pauli matrices1 and σ̄z = diag (−1, 1) where Trρ̂2 (x) =
(
3x2 + 1

)
/4 ≤ 1.

It is a mixed state for x < 1 and pure only at x = 1. The eigenstates and eigenvalues are

∣∣ψ−
〉
↔ λs (x) =

1

4
(3x+ 1) , (8.45)

for the singlet, and {
|11⟩ , |00⟩ ,

∣∣ψ+

〉}
↔ λt (x) =

1

4
(1− x) , (8.46)

for the triplet, displaying a triple degeneracy. For x = 1/3, λs (1/3) = 1/2 and λt (1/3) =
1/6. The sets of modified parameters are

(t−, u−, v+, w−) =

(
1 + x

2
, 0,−x, 0

)
(8.47a)

(t+, u+, v−, w+) =

(
1− x
2

, 0, 0, 0

)
(8.47b)

8.5.1 Quadridistance and quadrispeed in 4D

The two quadratic quadridistances are

s21 (x) = t2− −
(
u2− + v2+ + w2

−
)
= t2− −X2

1 =
1

4
(1− x) (1 + 3x) ≥ 0 (8.48a)

s22 (x) = t2+ − u2+ − v2− − w2
+ = t2+ −X2

2 =

(
1− x
2

)2

− 0 ≥ 0, (8.48b)

the distances between two “events” in 3D are X2
1 = (−x)2 and X2

2 = 0. The sum of the
quadridistances and their ratio are

s21 (x) + s22 (x) =
1

2

(
1− x2

)
≤ 1

2
(8.49a)

s22 (x)

s21 (x)
=

1− x
1 + 3x

≤ 1, (8.49b)

although s21 (0) = s22 (0) = 1/4, s21 (x) and s
2
2 (x) differ from each other at x = 1, s21 (1) = 1

and s22 (1) = 0. For a pure state the quadridistance s2 (1) is null whereas s1 (1) attains its
maximum value. When the state is completely stochastic both quadridistances acquire
the same value, s1 (0) = s2 (0) = 1/2. One can find the light cone locations solving the
equation

t2− (x)−X2
1 (x) = 0 =⇒ 1

4
(3x+ 1) (1− x) = 0 (8.50)

the two zeros of this equation lead to

x11 = 1 =⇒
(
t2− (1) X2

1 (1)
)
=
(

1 1
)

x12 = −1/3 =⇒
(
t2− (−1/3) X2

1 (−1/3)
)
=
(

1/9 1/9
)

1Worth noting that the overline was introduced to define σ̄z = −σz because σz⊗(−σz) ̸= − (σz ⊗ σz).
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and Mxx (x12) =Myy (x12) =Mzz (x12) = −x12 = 1/3. The partner of eq. (8.50) is

t2+ (x)−X2
2 (x) = 0 =⇒

(
1− x
2

)2

= 0 =⇒ x21 = 1,

=⇒
(
t2+ (1) X2

2 (1)
)
=
(

0 0
)

The plots of parametric components(
s21 (x) t2− (x)

)
=

(
1
4 (1− x) (1 + 3x)

(
1+x
2

)2 )
, (8.51a)(

s22 (x) t2+ (x)
)

=
( (

1−x
2

)2 (
1−x
2

)2 )
, (8.51b)

are presented in figs. 8.1 and 8.2.
For the partially transposed matrix,

ρ̂T =
1

4


1− x 0 0 −2x
0 1 + x 0 0
0 0 1 + x 0
−2x 0 0 1− x

 , (8.52)

to be compared with state (8.44c), as the parameters are

(t−, 0, v−, 0) = ((1 + x) /2, 0, 0, 0) , (8.53a)

(t+, 0, v+, 0) = ((1− x) /2, 0,−x, 0) , (8.53b)

therefore, the quadratic quadridistances become

(
sT1
)2

= t2− − v2− =

(
1 + x

2

)2

, (8.54a)(
sT2
)2

= t2+ − v2+ =
1

4
(x+ 1) (1− 3x) , (8.54b)

so
(
sT2
)2

assumes negative values for x ∈ (1/3, 1], meaning that according to ρ̂T (x) the

qubits are entangled for x in this interval. Numerically,
(
sT1
)2∣∣∣

x=0
=
(
sT2
)2∣∣∣

x=0
= 1/4,

whereas
(
sT1
)2∣∣∣

x=1
= 1 and

(
sT2
)2∣∣∣

x=1
= −1. Thence

1/4 ≤
(
sT1
)2∣∣∣

x∈[0,1]
≤ 1 (8.55)

and
−1 ≤

(
sT2
)2∣∣∣

x∈[1,0]
≤ 1/4. (8.56)

The range for
(
sT2
)2

is greater than for
(
sT1
)2
, see Fig 8.1 One may also admit that the

system is evolving in time, t being an intrinsic parameter; we may assume, for instance,
that x (t) = exp (−γt), so t− = (1 + exp (−γt)) /2, t+ = (1− exp (−γt)) /2 and v+ =
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Figure 8.1: The plot of
(
sT1

)2
is the dashed line, no significant information. For

(
sT2

)2
, the

solid line in black stands for the separable state, in red color it represents the x values for the
entangled state.

Figure 8.2: Evolution in time: The black dashed curve is for
(
sT1 (t)

)2
vs t. For

(
sT2 (t)

)2
vs t,

the solid line in red color is for the entangled state; the solid black line is for the separable qubits
state. The dot in green, on the t axis stands for ln 3. The dashed line in siena color marks the
point of the asymptotic stochastic state.

− exp (−γt). At t = 0 the qubits are in a singlet state while at t −→∞ the state becomes
maximally mixed.

Concerning the speeds, from eq. (8.53a)

V T
1 =

dv−
dt−

=
dv−/dx

dt−/dx
= 0 (8.57)

and from (8.53b)

V T
2 =

dv+
dt+

=
dv+/dx

dt+/dx
= 2 (8.58)
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the quadrispeeds become

(
dsT1
dt−

)2

= 1−
(
V T
1

)2
= 1 (8.59a)(

dsT2
dt+

)2

= 1−
(
V T
2

)2
= 1− 4 = −3. (8.59b)

while the first speed evolves on the “light cone”, the second is “superluminal”. Both
speeds, are independent of x as they dependence on x is linear; for other quantum states
[12–15], having a multiparametric nonlinear dependence, the quadrispeeds may depend
on further parameters.

8.6 Summary and conclusion

I studied a common problem in quantum mechanics involving the relationship between
entanglement and separability for a two-qubit system. The state of the system, in Fano’s
form, is described using two polarization vectors and a correlation matrix. By examining
the symmetries contained in the state, represented as a 4 × 4 matrix, I introduced new
parameters by reordering the matrix entries. These parameters show that the positiv-
ity condition of the state is related to quadratic distances in 4D (3+1) space, under a
Minkowski metric on a compact space.

By performing a local reflection symmetry operation on the bipartite state one obtains
another one, which is equivalent to that obtained by doing a matrix partial transposition
as proposed in [8, 9]). This procedure permits the construction of two quadridistances,
and for certain values of the parameters one can be negative, therefore, according to the
Peres-Horodecki criterion (PHC) the state cannot be expressed in a separable form, the
qubits are objectively entangled.

In Minkowski’s compact space, the PHC has a geometrical interpretation. One can
draw trajectories and visually identify two regions: one where the qubits are entangled
and another where they are separable. The border between these regions is equivalent to
the light cone surface in SR. Using a lexicon adapted from the SR, one region has been
called entangled-like, equivalent to space-like, and the other separable-like, analogous to
time-like.

It is surprising to find a connection between quantum entanglement and the Minkowski
structure of special relativity, despite the lack of an obvious link between both. The
formalism and example presented in this essay, as well as previous research [6, 7, 22],
demonstrate a parallelism between the two fields of physics. It is worth noting that the
speed of disentanglement corresponds to the speed of a superluminal object in SR.
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