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6.1 Introduction

When matter is driven away from thermal equilibrium, impressive things can happen.
Fast oscillating mirrors can make photons pop out from the vacuum state of the electro-
magnetic field. Jiggling molecules can become assembled as parts of living cells. Both
effects can be witnessed with current experiments: photons have been created from the
dynamic modulation of an optical cavity [1], and synthetic cells are currently being de-
veloped [2]. But there seems to be something deeper with living entities, something that
attracts the curiosity of non-biologists like Erwin Schrödinger [3], Alan Turing [4], John
von Neumann [5], Ilya Prigogine [6], and Freeman Dyson [7], just to name a few. What
is it?

Perhaps it has to do, at least in part, with the fact that a lot of human intention and
engineering is required to build complex devices, tools, and experiments. Precise driving
forces shall make mirrors oscillate in just the right way, if one wants to produce single
photons by means of the dynamical Casimir effect. By contrast, whatever the sources
of free energy that have pushed inanimate matter into living beings, be it hydrothermal
vents or solar light, no human intention or ingenuity has been involved. The driving
forces that first produced, and that keeps producing, living ensembles of matter have no
encoded goals from the outset. There must be some significant physics we can learn from
this.

Nonequilibrium self-assembly is one way of trying to make progress on this type of
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quest. Equilibrium self-assembly is, of course, more familiar to physicists. Atomic order
in crystals is well understood in terms of minimizing free energy. When a dissipative
system is driven away from thermal equilibrium, and no particular goal is encoded in
the driving forces, what happens? Most of the time, movements and positions may look
random. But sometimes exceptional arrangements and patterns emerge. The system may
eventually become self-organized in certain states and behaviors that remind us of what
living things do.

Here, we argue that life-inspired nonequilibrium self-organization can, and should, be
extended to the quantum regime. This could spur fresh thinking about sensing, commu-
nication, computation, and energetics, phenomena studied with living beings as well as
with quantum technologies. Because living systems are far from thermal equilibrium and
dissipative, we might imitate at least some of their successes with dissipative quantum
systems as an alternative to only aiming at ever higher isolation.

6.2 Nonequilibrium self-assembly

6.2.1 Experiments: self-replicating spheres and self-assembling
wires

Let us have a look at the “self-replicating spheres” experiment of the Self-Assembly Lab
at the Massachusetts Institute of Technology (MIT). This movie shows a few spheres free
to roll on top of a moving table; If you are reading the printed version, please visit the
webpage https://selfassemblylab.mit.edu/. The spheres are soft, passive, contain
magnetic beads inside them, but no biological or robotic components. Each sphere may
either stick to or unstick from its neighbors, somewhat at random. The table provides
the mechanical work driving the spheres out of equilibrium, with a driving pattern that
is maintained throughout the experiment. As time goes by, and new spheres are added as
raw material, we see the self-assembly of circular structures resembling a two-dimensional
cell. The cell-like structure grows and divides, akin to biological cells. In Fig.6.1, we
make a sketch of the process.

In the experiment discussed above, the division of the artificial cells is quite reversible
and unstable. That is, two artificial cells may merge back into a single one almost as
easily as it splits into two. This is unlike biological cells. The processes where replicated
bacteria merge back into a single one is not to be expected. In much the same way, plants
and animals do not ungrow in time [8]. This stability, or irreversibility, has to do with
heat dissipation.

We illustrate how statistical irreversibility is related with energy dissipation with a sec-
ond experiment. This video from Stanford University shows metallic beads immersed in a
viscous fluid; If you are reading the printed version, please look for the movie entitled “self-
assembling wires” at https://www.youtube.com/@StanfordComplexity/videos. The
source of work now is a static voltage applied to the system, with a tip coming from the
top. A metallic ring encircling metallic beads is kept at ground voltage. The spheres
then self-assemble into wires, allowing electric current to flow through the system. The
filaments follow the tip when it moves, as if the system was intentionally seeking the
energy source that maintains its worm-like state [9]. The wires are formed in a viscous
fluid, while the spheres are dragged by the air. This is key to explain the higher stability

https://selfassemblylab.mit.edu/self-replicating-spheres/2018/1/5/aj6783oabsu3rkrtz1axwsoqzkbnes
https://selfassemblylab.mit.edu/
https://www.youtube.com/watch?v=PeHWqr9dz3c
https://www.youtube.com/@StanfordComplexity/videos
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Figure 6.1: Sketch of the “self-replicating spheres” experiment conducted at MIT (see the movie
at https://selfassemblylab.mit.edu/). Mechanical vibrations on a moving table provide the
work source for the soft spheres to stick or unstick, apparently at random. With time, the spheres
eventually self-organize in a two-dimensional cell-like structure, and also divide into two cells.

of the self-assembled wires as compared with the self-replicating spheres.

6.2.2 Theory: dissipative adaptation

Dissipative adaptation is a hypothetical thermodynamic principle to describe nonequi-
librium self-assembly. It has been coined by the physicist Jeremy England [8, 10], in
tribute to Prigogine’s concept of dissipative structures [6]. England’s idea was to gener-
alize Boltzmann’s distribution, which links the thermal equilibrium probability pk of a
system to occupy a given physical state k to the energy Ek of that state as

pk ∝ e−βEk , (6.1)

where β = (kBT )
−1, given in terms of the temperature T , and the Boltzmann constant

kB .
By following a stochastic-thermodynamics way of thinking, specially Jarzynski [11]

and Crooks [12] fluctuation theorems, England emphasizes that the history of a particle
from an initial state i to a final state j is most important in nonequilibrium scenarios.
The transition probability from i to j, namely

pi→j , (6.2)

should now be the key variable biased by some energetic constraint. However, when
dynamical transitions come into play, energy exchanges between the system and its en-
vironment start playing a role. It should thus be reasonable that the work W performed
on the system and the heat it dissipates affect the transition probabilities. The intuition
is that, provided enough work, the system can jump unexpectedly high barriers, reaching

https://selfassemblylab.mit.edu/
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otherwise atypical states. Because conservative systems could simply jump back those
atypically high barriers, the presence of heat dissipation to the environment creates the
mechanism for stabilization of the system in the final state, hence introducing statistical
irreversibility. This should explain how, given a certain drive, a system can dissipatively
adapt to the patterns of its nonequilibrium environment.

In mathematical terms, the dissipative adaptation reads [10]

pi→j

pi→k
= e−βEkj

p∗j→i

p∗k→i

⟨e−βW ⟩ik
⟨e−βW ⟩ij

, (6.3)

showing how both equilibrium (Boltzmann) and nonequilibrium (kinetic and thermody-
namic) aspects compete in determining the configurations of the system. The kinetic
term is described by the time-reversed transition probability p∗j→i. The analogy with the
barrier hight is again useful here. Regardless of how much work the system absorbs and
dissipates, the system tends to occupy more frequently the states that are reversibly more
accessible due to low barriers. Finally, the thermodynamic dependence is given by the
absorbed work that appears in ⟨e−βW ⟩ij , with the average taken with fixed initial i and
final j states. The bigger the absorbed work W from i to j, the higher the probability of
that transition to occur.

6.3 Quantum dissipative adaptation

Does the notion of dissipative adaptation survive at the quantum regime? Mathematically
speaking, Eq.(6.3) clearly diverges at the zero-temperature limit, where quantum effects
are most pronounced. This means we cannot apply it directly to the quantum domain.
Also, we may guess that quantum coherent effects could imply a violation of the dissipative
adaptation hypothesis. Classically, work is required for a system to jump over energy
barriers in order to achieve exceptional states. Quantum coherence, such as tunneling
for instance, could provide a mechanism of organization with no jump over barriers,
possibly with no work cost, while dissipation would guarantee its stability. Finally, it is
not obvious how quantum fluctuations in the source of energy would affect the adaptation
of the system, so the very definition of work would be in question in such a scenario.

6.3.1 Our main result

As it turns out, a clear connection between average work and transition probability can be
found in the extreme quantum regime of zero temperature, with the energy input provided
by single-photon pulses. Most interestingly, our results are valid under conditions where
Crooks’ and Jarzynski’s theorems cannot be applied, suggesting a deeper foundation for
the dissipative adaptation hypothesis. Our model assumes a system-plus-environment
approach, where single-photon pulses drive single three-level atoms in Λ configuration,
each atom dissipatively coupled to a thermal bath at temperature T = 0. Our quantum
dissipative adaptation reads [13]

pa→b =
Γb

Γa + Γb

⟨W ⟩a
ℏωa

, (6.4)

where |a⟩ and |b⟩ correspond to the two lowest (and equally stable) energy levels of the Λ
systems. Here, ℏωa is the energy difference between the state |a⟩ and the excited state |e⟩.
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The spontaneous emission rates, denoted by Γa and Γb, describe the kinetic contribution
to our quantum dissipative adaptation. Finally, ⟨W ⟩a is the average work performed by
a single-photon pulse on a single Λ atom during the transition |a⟩ → |b⟩. In Fig.6.2, we
picture the concept behind our quantum dissipative adaptation.

Figure 6.2: Sketch of the model revealing a quantum dissipative adaptation, as described by
Eq.6.4. Polarized single-photon pulses hit an ensemble of atoms in a mixture of states |a⟩ (light
circle) and |b⟩ (full circle). The atoms have three energy levels in Λ configuration, where |a⟩ and
|b⟩ are the lowest levels (not necessarily degenerate), and |e⟩ is the excited state. As time goes
by, the work ⟨W ⟩a provided by the photons may leave the ensemble organized in a pure state
|b⟩, with a probability pa→b ∝ ⟨W ⟩a. To compute the work, we consider a normalized pulse |1a⟩
of finite linewidth. The probabilistic nature of the dynamics is quantum at its origin, since the
temperature is T = 0.

As we will see in more detail below, maximal work absorption does not mean maximal
excitation probability. That is to say, quantum coherence allows the system to somehow
“jump below the barrier” while still consuming work from the source (the photon, in
that case). Quite on the opposite, the absorbed work ⟨W ⟩a hits its maximum precisely
when the excitation probability pa→e hits its minimum, showing how the work cost of
self-organization in the presence of quantum-coherent transitions is far from intuitive.

6.3.2 Experimental context of the quantum model: waveguide-
QED

The model that led us to Eq.(6.4) refers to the experimental context known as waveg-
uide quantum electrodynamics (waveguide-QED). In cavity-QED, photons get trapped
between mirrors. In waveguide-QED, by contrast, single-photon pulses propagate in
waveguides and strongly interact with matter, driving it out of equilibrium. Relaxation,
encompassing decoherence, spontaneous emission, and stimulated emission, also takes
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place through the guided modes [14–19].
One-dimensional (1D) waveguides can be implemented with semiconducting materi-

als, such as nanophotonic wires, photonic crystals, and plasmonic nanowires. Few-level
quantum systems are obtained with semiconducting quantum dots, basically nano-sized
islands where electric dipoles (electron-hole pairs) are spatially confined. See review [20].

Alternatively, superconducting rings can also play the role of artificial atoms. The elec-
tric current becomes quantized, as reminiscent of Bohr’s atomic model. Superconducting
transmission lines are used as waveguides in this case [21].

6.3.3 The quantum model: single-photon pulses driving Λ atoms

We consider an electromagnetic environment with two orthogonal polarization modes, aω
and bω, where ω are field frequencies. We consider the continuum limit of an unstructured
environment, i.e., we assume a constant density of 1D modes ρ1D, so that,∑

ω

→
∫

dω ρ1D(ω) = ρ1D

∫
dω. (6.5)

Initially, at time t → −∞, the electromagnetic field is in the vacuum state |0⟩ for all the
modes, corresponding to an environment in thermal equilibrium at temperature T = 0.

At time t = 0, a single-photon pulse is added to the atomic environment, with a
well-defined polarization,

|1a⟩ =
∑
ω

ϕa
ω(0)a

†
ω|0⟩. (6.6)

The pulse admits a space-dependent description, namely,

ϕa(z, t) =
∑
ω

ϕa
ω(t) exp(ikωz), (6.7)

where kω = ω/c, and c is the speed of light. If, for instance, the pulse has been prepared
by the spontaneous emission of a distant two-level atom (not considered in the model),
then ϕa(z, 0) will take an exponential envelope profile.

We consider a dipole interaction with the three-level atom, in the rotating-wave ap-
proximation regime,

HI = −iℏ
∑
ω

gaaωσ
†
a + gbbωσ

†
b + h.c., (6.8)

where σa = |a⟩⟨e|, and σb = |b⟩⟨e|. The states |a⟩, |b⟩ and |e⟩ have been defined above.
h.c. stands for hermitian conjugate. The couplings to the environment give rise to the
spontaneous emission rates

Γa,b = 2πg2a,b ρ1D, (6.9)

evidencing how dissipation emerges in our model.
The transition probability between the two stable atomic states |a⟩ and |b⟩ are given

by standard quantum theory, namely,

pa→b(t) = ⟨b|trE [U |a, 1a⟩⟨a, 1a|U†]|b⟩, (6.10)

where trE is the trace over the electromagnetic environment. Whenever pa→b(∞) = 1,
the atom achieves self-organization in the sense that any initial mixed state ρS(0) =
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p
(0)
a |a⟩⟨a|+ p

(0)
b |b⟩⟨b| ends up at ρS(∞) = |b⟩⟨b|. In that case, the initial mixture present

in ρS(0) is transferred to the quantum state of the field, namely ρE = trS [ρ], where ρ is
the state of the system-plus-environment universe. To achieve such ideal self-organization,
the photon must be resonant with the atomic frequency ωa = (Ee−Ea)/ℏ. The transition
frequency to state |b⟩, i.e., ωb = (Ee − Eb)/ℏ, does not affect our results, which means
that the final state can have either higher or lower energy without altering the probability
transition.

In Eq.(6.10), the unitary operator corresponds to

U = exp (−iHt/ℏ) , (6.11)

where the Hamiltonian describes the atom-plus-field universe,

H = HS +HI +HE . (6.12)

The atomic system is described by

HS = ℏωa|e⟩⟨e|+ ℏδab|b⟩⟨b|, (6.13)

so that δab = ωa − ωb. Finally, the environment is described by

HE =
∑
ω

ℏω(a†ωaω + b†ωbω), (6.14)

where the
∑

ω ℏω/2 terms have been omitted for convenience. More details can be found
in Ref.[13].

6.3.4 Work performed by a single-photon pulse on a single atom

We have defined work in two equivalent ways for this single-photon pulse model, one in
the Schrödinger picture and the other in the Heisenberg picture (see proof of equivalence
in Ref.[22]). Because the Heisenberg picture is more appealing to our classical intuition,
it is worth highlighting it here. When a time-varying classical electric field E(t) acts on a
classical dipole D(t) = qx(t), the work is given by W =

∫
Fẋ dt =

∫
qEẋ dt =

∫
ḊE dt.

Analogously, we define the average work performed by a single-photon pulse on a quantum
dipole as

⟨W ⟩ =
∫ ∞

0

⟨(∂tD(t))Ein(t)⟩ dt. (6.15)

Only the incoming field, Ein(t) =
∑

ω iϵωaωe
−iωt+h.c., is used in our definition, since the

field produced by the atom that acts back on the atom itself gives rise to heat dissipation
in our model. Operator D(t) is the dipole operator, computed as D(t) = U†DU , with
D =

∑
Deaσa + h.c.. The constants are related with to coupling energy, ℏga = Deaϵωa .

The index for ⟨W ⟩a in Eq.(6.4) states that the particular atomic initial state |a⟩ is being
assumed in the calculation of the average work.

6.3.5 Some analytical results

Our main result, Eq.(6.4), is valid for any pulse shape. To provide an analytically solvable
example, we can think of an exponential pulse (as it would have been provided by the
spontaneous emission from a hypothetical far-away two-level atomic source),

ϕa(z, 0) = NΘ(−z) exp[(∆/2 + iωL)z/c], (6.16)
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where N =
√
2πρ1D is a normalization constant, Θ(z) is the Heaviside step function, ∆

is the spectral linewidth, ωL is the central frequency, and c is the speed of light.
In that case, we find that

pa→e(t) ≤ 4∆Γa/(Γa + Γb)
2. (6.17)

This means that

pa→e(t) → 0 when ∆ → 0, (6.18)

corresponding to the monochromatic limit. In other words, the excitation probability
vanishes in the monochromatic limit. However, the monochromatic regime also implies
maximal self-organization,

pa→b(∞) =
Γb

Γa + Γb

4Γa

Γa + Γb +∆

∆→0
=

4ΓaΓb

(Γa + Γb)2
= 1, (6.19)

provided that Γa = Γb.
The absorbed work also achieves maximal values in the monochromatic regime,

⟨W ⟩a = ℏωa
4Γa

Γa + Γb +∆

∆→0
= 2ℏωa (if Γa = Γb), (6.20)

evidencing that an absorption-plus-emission picture is inadequate to characterize the
(rather quantum coherent) work transfer.

6.3.6 Statistical irreversibility in the quantum model

We can now understand why the zero-temperature regime causes a divergence in the clas-
sical theory. When computing the reverse (backward) probability, with a pulse inverted
in time, we find that

p∗b→a(t) = 0, (6.21)

since the atom is transparent to the reversed driving pulse. Eq.(6.21) is valid under any
pulse shape. In Crooks theorem, it is assumed that pa→b/p

∗
b→a = exp(βQ), where Q

is the stochastic heat dissipated to the environment [12]. Here, both the left-hand and
right-hand sides of this relation would diverge for a finite Q and zero temperature β → ∞.

6.4 Quantum cloning

How close to the self-replicating spheres experiment discussed above can our quantum
version of the dissipative adaptation take us?

6.4.1 Model

Let us consider a one-dimensional chain of Λ systems, each at equilibrium at temperature
T = 0 in one of the two stable states |a⟩ or |b⟩, so that its quantum state reads

|a⟩|a⟩|b⟩...|a⟩|b⟩. (6.22)
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To replicate this state, we need a second chain of Λ systems, playing the role of raw
material. That is, this second chain should be in an “empty” (bare) state, containing no
special information, let’s say,

|b⟩|b⟩|b⟩...|b⟩|b⟩. (6.23)

Ideally, we hope to find a cloning transformation where

|b⟩|b⟩|b⟩...|b⟩|b⟩ → |a⟩|a⟩|b⟩...|a⟩|b⟩. (6.24)

Note that there is no contradiction with the no-cloning theorem, which forbids the per-
fect copying of arbitrary superpositions (though imperfect copies can nevertheless be
obtained), but allows basis states to be in principle perfectly cloned [16, 22, 23].

Thermodynamically, the single-photon pulses provide the energy source (the work) for
this quantum cloning process. As this source is consumed, the field ends up in a modified
state, so the full view of the cloning process here is more rigorously characterized as

U |chain1⟩|chain2⟩|photons⟩ → |chain1⟩|chain′2⟩|photons
′⟩. (6.25)

Ideally, we would like to find the emergence of |chain′2⟩ = |chain1⟩, without having to
finely engineer the photon state (i.e., spontaneously emitted photons should be enough).

To achieve that, we have to devise some interaction between the two chains. If each
Λ system from the first chain pairs with its respective neighbor from the second chain,
let’s say, by means of some type of dipole-dipole interaction that is sensitive to the state
of the atom, this would affect the dynamics of this empty chain when it is driven out of
equilibrium by single photon pulses (now polarized in the b modes). For instance, let us
take an atom-atom Hamiltonian in the form

H12 = −J σ
(z)
a1 σ

(z)
a2 , (6.26)

where σ
(z)
a1 = |e1⟩⟨e1| − |a1⟩⟨a1| corresponds to one atom operator in the first chain,

whose state is to be replicated, and σ
(z)
a2 describes the equivalent for one atom in the

second (empty) chain. The coupling strength J alters the resonance of the photon with
one atom conditional to the state of the other atom. As it may have been noticed, H12 is
a dispersive-type interaction inspired by the Ising model for ferromagnets. Curiously, in
the self-replicating spheres experiment magnetic dipoles are also employed so as to make
the spheres interact. If that is mere coincidence or reveals something deeper, we do not
know. In Fig.6.3, we illustrate the idea of our self-organized quantum cloning.

6.4.2 Results

As we show in Ref.[22], the probability for a successful replication in a single pair of atoms
at times t → ∞ (much longer than the single-photon pulse duration) is given by

pa1,b2→a2,a2(∞) = P (∆, δL−bJ), (6.27)

where we have defined

P (∆, δL−bJ) ≡
Γ2(

2Γ−∆
2

)2
+ δ2L−bJ

[
1 +

∆

2Γ
− ∆(2Γ +∆)(

2Γ+∆
2

)2
+ δ2L−bJ

]
. (6.28)
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Figure 6.3: Sketch of the self-organized quantum cloning proposed in Eqs.(6.24) and (6.25).
Photons polarized in b provide the work ⟨W ⟩a1,b2 for copying the states of the atoms in chain
1, |a⟩|a⟩|b⟩, into the atoms of chain 2. Chain 2 undergoes transformation |b⟩|b⟩|b⟩ → |a⟩|a⟩|b⟩ in
time, while keeping the original (template) chain 1 unaltered. The pairwise coupling between
the chains, H12 as in Eq.(6.26), is responsible for static shifts in the atomic energy levels, thus
consuming no work for that. The probability of a copying transition here is proportional to
the work provided by the single-photon pulses, pa1,b2→a2,a2 ∝ ⟨W ⟩a1,b2, fulfilling the quantum
dissipative adaptation discussed above.

We have again chosen the ideal scenario where Γ = Γa = Γb. We have also assumed an
exponentially decaying pulse in time with spectral linewidth ∆, as in Eq.(6.16).

Here, the crucial parameter is the light-matter detuning, as affected by the dipole
interaction strength J ,

δL−bJ = ωL − (ωb + J). (6.29)

To see that, we can assume in Eq.(6.28) that a highly monochromatic photon (∆ → 0)
arrives at resonance with the atomic frequency as given by ωb + J . In that case, we can
in principle achieve perfect quantum state replication, since

pa1,b2→a2,a2(∞) = P (0, 0) = 1. (6.30)

Again, the quantum dissipative adaptation is also fulfilled in this slightly more com-
plicated case (with general detunings and finite atom-atom interactions),

pa1,b2→a2,a2(∞) =
⟨W ⟩a1,b2
2ℏωL

, (6.31)

but now with the photon central frequency ωL appearing instead of the atomic frequency
(see Eq.(6.4) for comparison).
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6.4.3 A word on mutations

Ideally, we hope that a perfect “dormant” transition would occur when the atom to be
copied is at state |b⟩. The probability for this dormant transition reads

pb1,b2→b2,b2(∞) = 1− P (∆, δL−b). (6.32)

That is, we take the same expression from Eq.(6.28), except that we now replace the
detuning by

δL−b = ωL − ωb, (6.33)

which is given by the frequency of the atom undisturbed by the interaction strength J .
The interesting thing is that, for a photon of frequency ωL = ωb+J (achieving perfect

replication), the unperturbed detuning is given by δL−b = J , which is finite (J < ∞)
in any physically relevant scenario. This implies that random “mutations” during the
replication of the chain are unavoidable, as introduced by the far-from-resonance driving
photons themselves. It is surprising that such a simplistic model contains some analogy
to ultraviolet-induced mutations in the genetic material of living cells. Further exploiting
these random mutations to achieve some degree of evolutionary process, provided that
some selection mechanism is present, sounds a promising line of research.

6.5 Conclusions

In summary, we have investigated the notion of dissipative adaptation as a thermodynamic
principle underlying some types of nonequilibrium phenomena. In particular, it allowed
us to draw a formal analogy between a classical theory of nonequilibrium self-assembling
systems and a quantum model of a self-organizing system such as the three-level quantum
system electromagnetically driven by a propagating single-photon pulse, as shown by Eqs.
(6.3) and (6.4). As an application, we have conceived a quantum cloning process in a
dissipative system driven out of equilibrium. This has been inspired by self-replication,
a life-like behavior also underlying the experiment with soft spheres mechanically driven
by an oscillating table. The work cost of our quantum cloning process has been found
consistent with the dissipative adaptation hypothesis, as shown in Eq.(6.31).

In perspective, we would like to understand how broadly applicable is the idea of dis-
sipative adaptation, with an eye to alternative implementations of quantum information
processing in nonequilibrium dissipative systems. How are our results modified when
two photons arrive simultaneously, thus inducing stimulated emission? Does the quan-
tum dissipative adaptation play any role in photosynthesis? Does it hold for a quantum
Brownian particle dissipatively tunneling in a bistable potential? Can an evolutionary-
like processes emerge in our quantum cloning model? Could all of these contribute to
new sensing, cryptography, and other quantum technologies? Can we find self-organized
behaviors, therefore going beyond self-organized quantum states of dissipative quantum
systems? As an encouraging first step towards this last question, we mention that the
energy-seeking behavior appearing in the self-assembling wires [9] has been recently ex-
trapolated to the quantum regime [24], thus revealing emergent functionalities such as
adaptive heat control, comprised of self-organized energy gradients and active equilibra-
tion.

According to Albert Szent-Györgyi, Nobel-prize winner in physiology or medicine
of 1937, “life is nothing but an electron looking for a place to rest”. This provocative
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statement suggests to us that our nonstationary quantum electronic devices are somewhat
alive already. Can we make them even more alive? We would like to find it out.
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