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Plan of the Third Lecture

1. Entanglement classification
2. Entropy inequalities

3. Quantum teleportation



Entanglement Classification

Preliminary classification
We already saw that topology distinguishes different types of entanglement:

® separable states
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® Maximally entangled states
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® Less entangled states (non-unitary matrices)
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Entanglement Classification

Classification

There is a discrete infinite number of topologies that can represent different
types of entanglement
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¢ Conceptual Problem 1: In Quantum Resource Theory one is more
interested in a finite classification: States from different classes are
suitable for different quantum tasks

® Conceptual Problem 2: Can one produce a complete classification?

¢ Technical Problem: For finite integer k not all the diagrams are
independent, some topologies are equivalent

What is the best way to coarse-grain the topological classification?



Entanglement Classification

Connectivity
® A simple way to characterize wiring is through connectivity, that is by
telling what is connected to what

® The classes of connectivity can be defined by corresponding
(adjacency matrices of) graphs

In the case of bipartition the simplest representatives of the connectivity
classes are planar graphs
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All the planar diagrams modulo local braiding



Entanglement Classification

Pair of qubits

For a pair of §? with four punctures the only planar diagrams modulo local
action are
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® The first state is separable and the last one is maximally entangled

® The middle state is the same as the first one (two lines not enough to
support entanglement)
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There are only two nonequivalent classes of diagrams



Entanglement Classification

Bipartite entanglement beyond qubits

A pair of spheres with six punctures have dimension C3 = 5
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But there are only three independent planar connectomes
® This generalization is not easily extendable to arbitrary qudits

® How can we generalize systematically?



Entanglement Classification

Jones-Wenzl projectors
The space of spin j representation has dimension 2j + 1
® There are 2j 4+ 1 ways of making a singlet out of 4 spins j.
It will be convenient to construct spin j as 2j spins 1/2. Note that
D C is a projector on a singlet

For spin j = n/2 + 1 one can use (thick line = n normal ones)
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Entanglement Classification

Qutrit entanglement
Use Jones-Wenzl projectors joining pairs of lines into spin j = 1
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Find all independent diagrams modulo local braiding:
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® Diagrams with more broken connections are equivalent to the first one
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® For classification it is enough to consider only half of the punctures



Entanglement Classification

General bipartite entanglement
One can generalize the diagrammatic classification to H = C, ® C,,

® For n = m the set of diagrams is (2n — 2 points for C")
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® For n # m one adds points to one of the sides



Entanglement Classification

Tripartition

For the bipartite case the simple classification gives a very intuitive picture
of entanglement

® For the tripartite case (qubits) the same classification should give
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There are only 3 nonequivalent classes. The genuine tripartite entanglement
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is of GHZ type. No obvious W state (e.g. |001) + |010) + |100))




Properties of Entanglement

Monogamy
® Entanglement is a resource that can be shared between different
systems
® In the TQFT approach the resource are the Wilson lines

Monogamy of entanglement means that a state that is maximally entangled
with a second state cannot be entangled with any other state
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Properties of Entanglement

Entropy of the connectome states
Let us focus on the simple class of projector states

® For the maximally entangled state the entropy is given by the
dimension of the Hilbert space

® This Hilbert space is that of a sphere that dissects the state

® One can repeat the replica trick derivation for other connectomes
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® The entropy is given by S? cutting the minimum number of lines




Properties of Entanglement

Line counting

® For the connectome states the entropy is given by log(dim H i)

® H,i, is the Hilbert space of S? with the minimal number of punctures,
cutting the state into two

® Fork>n>1
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Sg ~ 2nlog?2

log 2 of entropy per line

Instead of entropy one can measure entanglement by the number of lines



Properties of Entanglement

Subadditivity
Let us prove some of the characteristic equalities by line counting

® Subadditivity
S(AB) < S(A) + S(B)

Denote
® AB — the complement of AB
® N, and Np — the numbers of lines that emanate from A and B
® (,p —the number of lines connecting A and B
[ )

Nz is the number of lines connecting both A and B to AB

Then
Ny+Np = Nip+204p > Nip

L4p is mutual information /(AB) = S(A) + S(B) — S(AB)




Properties of Entanglement
Strong subadditivity

S(pasc) + S(ps) < S(pas) + S(pac)

Denote

® Nipe — total number of lines that connect A,

B or C with ABC G_e
® Nyg and Ngz — number of lines connecting %7

the unions with their complements
® Np —number of lines emanating from B e

® /4c —number of lines connecting A and C

Then
Nm = Nﬁ‘i'NR_ngC_NB SNE'FNK_NB



Emergence of Spacetime

Classical limit

In Chern-Simons k — oo corresponds to the classical limit

a1 DT = TZ + DC

Braiding — permutations (no knots). All states are simple connectomes
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Large k behavior of the entropy (minimal area and corrections)
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Emergence of Spacetime

Classical and quantum topologies
Connectome states are similar to classical geometries in holography
® We can label them classical topologies

Quantum topologies are linear combinations of the classical ones:
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Defects contribute to the relative weight of the disconnected topologies
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Connection to (Loop) Quantum Gravity



Emergence of Spacetime

AdS/CFT

® Quantum gravity (string theory) in AdS space is
equivalent to a CFT at the boundary of AdS

This equivalence can be understood in the sense of
state-cobordism correspondence:

® Topology of the space glued to the boundary
encodes a quantum state

The analogy can be made even more precise if one
recalls that gravity in AdSs can be cast as SL(2, R) X
SL(2,R) Chern-Simons theory

Classical gravity limit:
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Emergence of Spacetime

Ryu-Takayanagi formula
For two regions A and B on the AdS boundary the entanglement entropy is
A
S, = Sp — min 2realas]
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Recall that for the projector states the entropy is defined by the number of
connections:
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Sy = Sp = mlog?2.

valid fork > m > 1

® One can assume that each line is a flux with area 4Gy log 2



Quantum Protocols

Quantum teleportation [Bennett et al "93]

Alice has an unspecified quantum state which she wants to pass to Bob.
They share an entangled pair:
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e Alice applies an entangling transformation on her pair of states

® She measures the result an reports it to Bob via a classical channel

® Depending on the result of the measurement Bob recovers the original
state by an appropriate unitary



Quantum Protocols

Teleportation in TQFT

Consider the teleportation setup in a topological context

Alice Bob

Teleporting the state to Bob means




Quantum Protocols

Teleportation in TQFT [Coecke][Kauffman][DM]

Consider the teleportation setup in a topological context

Alice Bob

Teleporting the state to Bob means




Quantum Protocols

Classical version

Principle of the quantum algorithm can be illustrated by a classical diagram
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This is not a proper quantum algorithm

® Here projectors are involved (stochastic algorithm)

® The projector basis is not orthogonal



Conclusions

TQFT offers a way to visualize quantum mechanics in terms of space
diagrams

Knot theory provides calculational tools for this presentation of
quantum mechanics

We mainly focused on quantum entanglement and showed how some
of its properties can be illustrated by the topological approach

Perhaps such approach can be applied to quantum gravity and quantum
computation (at least for educational purposes)



