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Plan of the Third Lecture

1. Entanglement classification

2. Entropy inequalities

3. Quantum teleportation



Entanglement Classification

Preliminary classification

We already saw that topology distinguishes different types of entanglement:

• separable states

∼ = |0⟩|0⟩

• Maximally entangled states

or ∼ = |0⟩|0⟩+ |1⟩|1⟩

• Less entangled states (non-unitary matrices)

∼



Entanglement Classification

Classification

There is a discrete infinite number of topologies that can represent different
types of entanglement

• Conceptual Problem 1: In Quantum Resource Theory one is more
interested in a finite classification: States from different classes are
suitable for different quantum tasks

• Conceptual Problem 2: Can one produce a complete classification?

• Technical Problem: For finite integer k not all the diagrams are
independent, some topologies are equivalent

What is the best way to coarse-grain the topological classification?



Entanglement Classification

Connectivity

• A simple way to characterize wiring is through connectivity, that is by
telling what is connected to what

• The classes of connectivity can be defined by corresponding
(adjacency matrices of) graphs

In the case of bipartition the simplest representatives of the connectivity
classes are planar graphs

, , ,

All the planar diagrams modulo local braiding



Entanglement Classification

Pair of qubits

For a pair of S2 with four punctures the only planar diagrams modulo local
action are

, , and

• The first state is separable and the last one is maximally entangled

• The middle state is the same as the first one (two lines not enough to
support entanglement)

=
1
d

There are only two nonequivalent classes of diagrams



Entanglement Classification

Bipartite entanglement beyond qubits

A pair of spheres with six punctures have dimension C3 = 5

, , ,

But there are only three independent planar connectomes

• This generalization is not easily extendable to arbitrary qudits

• How can we generalize systematically?



Entanglement Classification

Jones-Wenzl projectors

The space of spin j representation has dimension 2j + 1

• There are 2j + 1 ways of making a singlet out of 4 spins j.

It will be convenient to construct spin j as 2j spins 1/2. Note that

is a projector on a singlet

For spin j = n/2 + 1 one can use (thick line = n normal ones)

n

=

n

− ∆n

∆n+1

n

∆−1 = 0 , ∆0 = 1 , ∆n+1 = d∆n −∆n−1



Entanglement Classification

Qutrit entanglement

Use Jones-Wenzl projectors joining pairs of lines into spin j = 1

= − 1
d

Find all independent diagrams modulo local braiding:

, , and

• Diagrams with more broken connections are equivalent to the first one

• For classification it is enough to consider only half of the punctures



Entanglement Classification

General bipartite entanglement

One can generalize the diagrammatic classification to H = Cn ⊗ Cm

• For n = m the set of diagrams is (2n − 2 points for Cn)

n = 2 : , ,

n = 3 : , , ,

n = 4 : , , , .

• For n ̸= m one adds points to one of the sides



Entanglement Classification

Tripartition

For the bipartite case the simple classification gives a very intuitive picture
of entanglement

• For the tripartite case (qubits) the same classification should give

There are only 3 nonequivalent classes. The genuine tripartite entanglement

= |000⟩+ 1√
d2 − 1

|111⟩, d = −A2 − A−2

is of GHZ type. No obvious W state (e.g. |001⟩+ |010⟩+ |100⟩)



Properties of Entanglement

Monogamy

• Entanglement is a resource that can be shared between different
systems

• In the TQFT approach the resource are the Wilson lines

Monogamy of entanglement means that a state that is maximally entangled
with a second state cannot be entangled with any other state

A B

C

A B

C



Properties of Entanglement

Entropy of the connectome states

Let us focus on the simple class of projector states

• For the maximally entangled state the entropy is given by the
dimension of the Hilbert space

S2

• This Hilbert space is that of a sphere that dissects the state

• One can repeat the replica trick derivation for other connectomes

ρ ∼
S2

∼ ∼ ρ2 Tr ρ = d·Tr
( )

• The entropy is given by S2 cutting the minimum number of lines



Properties of Entanglement

Line counting

• For the connectome states the entropy is given by log(dimHmin)

• Hmin is the Hilbert space of S2 with the minimal number of punctures,
cutting the state into two

• For k ≫ n ≫ 1

dimH2n =
(2n)!

(n + 1)!n!
≃ 4n

n3/2
√
π
, SE ≃ 2n log 2

log 2 of entropy per line

Instead of entropy one can measure entanglement by the number of lines



Properties of Entanglement

Subadditivity

Let us prove some of the characteristic equalities by line counting

• Subadditivity
S(AB) ≤ S(A) + S(B)

Denote

• AB – the complement of AB
• NA and NB – the numbers of lines that emanate from A and B
• ℓAB – the number of lines connecting A and B
• NAB is the number of lines connecting both A and B to AB

Then
NA + NB = NAB + 2ℓAB ≥ NAB

ℓAB is mutual information I(AB) = S(A) + S(B)− S(AB)

A B

AB

ℓAB

NA NB

NAB



Properties of Entanglement

Strong subadditivity

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC)

Denote

• NABC – total number of lines that connect A,
B or C with ABC

• NAB and NBC – number of lines connecting
the unions with their complements

• NB – number of lines emanating from B

• ℓAC – number of lines connecting A and C

A C

B

ABC

Then
NABC = NAB + NBC − 2ℓAC − NB ≤ NAB + NBC − NB



Emergence of Spacetime

Classical limit

In Chern-Simons k → ∞ corresponds to the classical limit

A → 1 , = +

Braiding → permutations (no knots). All states are simple connectomes

→ |00⟩ → |00⟩+ |11⟩

Large k behavior of the entropy (minimal area and corrections)

S =
π4

k4

(
1 − log

π4

k4

)
+ O(k−5)

S = log 2 − 8π4

k4 + O(k−5)



Emergence of Spacetime

Classical and quantum topologies

Connectome states are similar to classical geometries in holography

• We can label them classical topologies

Quantum topologies are linear combinations of the classical ones:

= (A4+A−4−1) +(1−A−4)(1−A4)

Defects contribute to the relative weight of the disconnected topologies

Emergence of space?

Connection to (Loop) Quantum Gravity



Emergence of Spacetime

AdS/CFT

• Quantum gravity (string theory) in AdS space is
equivalent to a CFT at the boundary of AdS

This equivalence can be understood in the sense of
state-cobordism correspondence:

• Topology of the space glued to the boundary
encodes a quantum state

The analogy can be made even more precise if one
recalls that gravity in AdS3 can be cast as SL(2,R) ×
SL(2,R) Chern-Simons theory

Classical gravity limit:

GN → 0 ,
Ld−2

GN
≫ 1



Emergence of Spacetime

Ryu-Takayanagi formula

For two regions A and B on the AdS boundary the entanglement entropy is

SA = SB = min
γAB

Area[γAB]

4GN

Recall that for the projector states the entropy is defined by the number of
connections:

|Ψ⟩ =

S2

m

n SA = SB = m log 2 .

valid for k ≫ m ≫ 1

• One can assume that each line is a flux with area 4GN log 2



Quantum Protocols

Quantum teleportation [Bennett et al.’93]

Alice has an unspecified quantum state which she wants to pass to Bob.
They share an entangled pair:

• Alice applies an entangling transformation on her pair of states

• She measures the result an reports it to Bob via a classical channel

• Depending on the result of the measurement Bob recovers the original
state by an appropriate unitary



Quantum Protocols

Teleportation in TQFT

Consider the teleportation setup in a topological context

Alice Bob

Teleporting the state to Bob means

Bob

−→

Bob



Quantum Protocols

Teleportation in TQFT [Coecke][Kauffman][DM]

Consider the teleportation setup in a topological context

Alice Bob

Teleporting the state to Bob means

Bob
Bi

−→ Bi

Bob



Quantum Protocols

Classical version

Principle of the quantum algorithm can be illustrated by a classical diagram

This is not a proper quantum algorithm

• Here projectors are involved (stochastic algorithm)

• The projector basis is not orthogonal



Conclusions

• TQFT offers a way to visualize quantum mechanics in terms of space
diagrams

• Knot theory provides calculational tools for this presentation of
quantum mechanics

• We mainly focused on quantum entanglement and showed how some
of its properties can be illustrated by the topological approach

• Perhaps such approach can be applied to quantum gravity and quantum
computation (at least for educational purposes)


