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Plan of the Second Lecture

1. TQFT

2. Topological quantum mechanics

3. Quantum entanglement



Categorification

Basics of category theory

Category theory is a general the-
ory of mathematical structures and
their relations.

Each category consists of
• objects A,B, . . .
• morphisms f : A −→ B, . . .

Axioms
• for f : A → B and g : B → C ∃ composition g ◦ f : A → C
• ∀A ∃! 1A : A → A such that f ◦ 1A = f or 1A ◦ g = g
• composition is associative h ◦ (g ◦ f ) = (h ◦ g) ◦ f

Fundamental example: Vect – linear spaces and linear maps



Categorification

Cob[d] – cobordism category in d dimensions

• objects – codimension-one oriented surfaces Σ in d dimensions
• morphisms M : Σ1 → Σ2 – dimension d manifolds with

boundary ∂M = Σ2 ∪ Σ1, where Σ is Σ with inverted orientation

Composition

Identity 1Σ is a “cylinder” Σ× I



Categorification

Functors – maps between categories

Each functor F includes
• identification of objects F(A) = A
• identification of morphisms F(g) = G

Axioms (F preserves the structure of the category)
• F(1A) = 1F(A)

• F(f : A → B) = F(f ) : F(A) → F(B)
• F(g ◦ f ) = F(g) ◦ F(f )

Topological Quantum Field Theory (TQFT) in d dimensions is a
functor between the category of cobordisms Cob[d] and the category
of vector spaces Vect



Categorification

Formal definition [Atiyah’89]

• Functor Z from Cob[d] to Vect:

1. (d − 1)-dimensional Σ −→ vector space HΣ = Z(Σ)
2. d dimensional M, Σ = ∂M −→ vector |ψ⟩ = Z(M) ∈ HΣ

3. ∀ Σ1, Σ2 and M, ∂M = Σ1 ∪ Σ2, −→ linear map
U = Z(M) : Z(Σ1) → Z(Σ2)

|ψ⟩ =
M

Σ → Σ
Σ

Σ
_

= U|ψ⟩

HΣ are Hilbert spaces and states |Ψ⟩ in these Hilbert spaces are en-
coded by different d-manifolds glued to Σ



Categorification

Atiyah’s axioms

• M with no boundary is a state in a trivial Hilbert space (single point).
M → C-number

In particular, there is an obvious scalar product

M
M' −→ ≡ ⟨ψ|ψ′⟩

• There is an identity operator, which corresponds to a featureless
cylinder connecting a pair of Σ

→ I

• Z(Σ1 ∪ Σ2) = Z(Σ1)⊗ Z(Σ2) for a disjoint union

ΣA ΣB −→ HΣA ⊗HΣB



Chern-Simons Theory

Explicit map

• The previous construction is a definition of a functor Z relating
categories of topological and linear spaces

• One explicit realization of such a functor is given by partition functions
of Chern-Simons theories (path integrals)

SCS[M] =
k

4π

∫
M

d3x ϵµνρ Tr
(

Aµ∂νAρ +
2
3

AµAνAρ

)
Consider 3D space M with boundary Σ. Then a state is

Ψ(Σ) =

∫
DA
∣∣∣
A(Σ)=AΣ

eiSCS[M]

Scalar product (composition)

⟨Φ|Ψ⟩ =

∫
DAΣ

∫
DA
∣∣∣
A(Σ)=AΣ

∫
DĀ
∣∣∣
Ā(Σ)=AΣ

eiSCS[M1∪M2]



Chern-Simons Theory

Specific model

We will be working with SU(2) Chern-Simons theory on 3-manifolds with
multiple Σ = S2 boundaries. Hilbert space H = HS2 ⊗HS2 ⊗ · · ·

It turns out dimHS2 = 1

• Need to make holes (Σ = S2\{Pi})

• Minimum working example – S2 with 4
punctures – qubit



Chern-Simons Theory

Qubit

Punctures are non-dynamical particles characterized by irreps J of su(2)k in
WZW theory

• A non-trivial Hn exists if ⊗n
i Ji contains trivial irreps

• dimHn is the number of trivial irreps

For 4 particles in spin 1/2 irrep 2 ⊗ 2 ⊗ 2 ⊗ 2 = 5 ⊕ 3 ⊕ 3 ⊕ 3 ⊕ 1 ⊕ 1, so

dimH = 2 |0⟩ ∼ |1⟩ ∼ − 1
N

|0⟩

Irreps of su(2)k are a bit different from irreps of su(2) – some irreps might be trivial



Chern-Simons Theory

Scalar products

To compute an overlap of two qubit states one has to glue two 3-balls along
the boundary 2-sphere:〈 ∣∣∣∣∣

〉
=

Expectation value of the Wilson loop operator in S3 (Jones polynomial)

Multiqubits

〈 ∣∣∣∣∣
〉

= = Z(S2×S1;R1,R2,R3,R4)

The resulting space is a higher order topology (S2 × S1)



Topological Quantum Mechanics

1D TQFT

Let’s try to construct a 1D example

Σ are just collec-
tions of points
(on a line)

What are the
vectors in H? |ψ⟩ =

Vectors in H are all ways of connecting points (on the right of the line) and
their linear combinations

• How does one compute inner product in this space?

bra: Flip the diagram
(exchange undercross-
ings and overcrossings)

= ⟨ψ|

Glue bra and ket!

⟨ψ|χ⟩ =

The result has no open ends, so it is not a vector, but a number



Topological Quantum Mechanics

Basis

• What is the dimension of H?

Fix it by requiring that H can be spanned by diagrams that connect points
without intersection (Temperley-Lieb basis). For example, for 4 points,

|e0⟩ = , |e1⟩ =

For this to make sense we need linear relations for the intersections. We will
require that

= A + A−1

• Note that the number of points must be even

• For 2n points the number of the basis diagrams is

dimH2n =
(2n)!

(n + 1)!(n)!
= 1, 1, 2, 5, 14, . . . (Catalan numbers)



Topological Quantum Mechanics

Calculus

Temperley-Lieb basis is not orthonormal. Use Gram-Schmidt procedure

|0⟩ ≡ 1√
⟨e0|e0⟩

, |1⟩ ≡ 1
N

(
− ⟨e0|e1⟩

⟨e0|e0⟩

)
How does one compute the overlaps?

⟨e0|e0⟩ = , ⟨e0|e1⟩ = , ⟨e1|e1⟩ =

Require that these are given by the ‘Jones’ polynomials of the diagrams

• Jones polynomial of a trivial circle J( ) = d

• For any link L, J( ∪ L) = d · J(L)

For the rest use skein relations. Consistency condition: d = −A2 − A−2



Topological Quantum Mechanics

Further comments

Dimension revisited: Compute the Gram matrix

det⟨ei|ej⟩ = d2(d2 − 1)

The dimension is 2 unless d = 0, 1. In general

dimH2n = Cn , if k > n − 1
(

d = −2 cos
π

k + 2

)
This 1D TQFT is equivalent to SU(2)k Chern-Simons theory

≡ ≡



Quantum Entanglement

In ordinary quantum mechanics

Consider a multipartite system H = H1 ⊗H2 ⊗ . . ., state |Ψ⟩ ∈ H and its
density matrix

ρ = |Ψ⟩ ⊗ ⟨Ψ|

Let us define the reduced density matrix for subsystem H1

ρ1 = Tr H2,H3,... (ρ)

• H1 is not entangled with (separable from) the rest of H if
ρ1 = |Ψ1⟩ ⊗ ⟨Ψ1| for some |Ψ1⟩

• otherwise, H1 is entangled

Example: in the EPR (Bell) state one has a pair of entangled spins

|Ψ12⟩ =
1√
2
(| ↑⟩ ⊗ | ↓⟩+ | ↓⟩ ⊗ | ↑⟩)



Quantum Entanglement

Von Neumann (entanglement) entropy

H = HA ⊗HB : S = −TrA(ρA log ρA), ρA = Tr Ā(ρ)

von Neumann entropy is a measure of entanglement

Replica trick: Compute instead (Rényi entropies)

Sn =
1

1 − n
logTrA (ρ

n)

Analytically continue in n and find S in the limit n → 1

Example

EPR: ρA =

(
1/2 0
0 1/2

)
, Sn =

1
1 − n

log

(
2

1
2n

)
= log 2



Quantum Entanglement

SLOCC classification

States with different entanglement properties are suitable for different
quantum tasks. General problem: classify different types of entanglement

• There is a partial classification known as SLOCC (Stochastic Local
Operations and Classical Communication)

For the local separation H = HN1 ⊗ · · · ⊗ HNn SLOCC classes are orbits of
the action of SL(N1)⊗ · · · ⊗ SL(Nn):

CN1 ⊗ · · · ⊗ CNn

SL(N1)⊗ · · · ⊗ SL(Nn)

• For 2 qubits – two SLOCC classes: separable and entangled (Bell)

• For two-partite H = Cm × Cn, with m ≥ n, there are n classes

• For three qubits there four classes: separable, Bell, GHZ and W

• For four qubits or three qutrits: no finite classification



Quantum Entanglement

Two-partite systems

Consider the situation H = Cm × Cn, with m ≥ n

• The reduced density matrix ρm or ρn can have at most rank n

Schmidt: ρ =

n∑
i=1

λi|i⟩⟨i| , λi ≥ 0

The SLOCC class is determined by the number of λi ̸= 0

• Local unitary operations do not change the von Neumann entropy
(preserve entanglement)

• Local invertible operations will in general decrease the entropy

General result: Local operations can convert states with more entanglement
into states with less entanglement with certainty, but only probabilistically in
the opposite direction



Quantum Entanglement and Knots

Entanglement: quantum vs topological

It seems quite natural to interpret entanglement as a sort of knotting or
linking. In 1997 Aravind suggests the following:

• EPR state: ψ = 1√
2
(| ↑⟩ ⊗ | ↓⟩+ | ↓⟩ ⊗ | ↑⟩)

• GHZ state: ψ = 1√
2
(| ↑↑↑⟩+ | ↓↓↓⟩)

Here a circle corresponds to a spin, while linking of circles is
entanglement of spins



Quantum Entanglement and Topology

What does entanglement mean in terms of topology?

The bra-ket notation is highly suggestive: separable ρ = |Ψ⟩⟨Ψ|

Consider Σ = ΣA ∪ ΣB. Two classes of states (3D topologies):

|Ψ1⟩ =
ΣA ΣB |Ψ2⟩ =

ΣA ΣB

• |Ψ1⟩ is always separable

• Separability of |Ψ2⟩ depends on dimH

Entanglement = space? Space emerges from entanglement? ER=EPR?



Quantum Entanglement and Topology

Replica trick [Dong,Fradkin,Leigh,Nowling’08]

• compute Tr ρn
A S = − d

dn Tr ρn
A

∣∣∣∣
n=1

(Unnormalized) density matrices for states |Ψ1⟩ and |Ψ2⟩

ρ̂1 =

ΣA ΣB

ΣA

_
ΣB

_ ρ̂2 =

ΣA ΣB

ΣA ΣB

_ _

Normalized reduced density matrices

ρ1(A) =
[ ]−1 ΣA

ΣA

_ ρ2(A) =



−1

ΣA

ΣA

_



Quantum Entanglement and Topology

Entanglement entropy

Tr
(
ρA

1

)n
= 1 , Tr

(
ρA

2

)n
=

[ ]1−n

Consequently,

SE(ρ1) = 0 , SE(ρ2) = log

[ ]

The entropy of |Ψ2⟩ is computed by a topological invariant on Σ× S1. The
value depend on the features of topology

• One can guess that

log

[ ]
= logTr I = log dimHΣ



Quantum Entanglement and Topology

Space wiring (Preliminary classification)

The amount of entanglement is characterized by the topology:

• separable states

∼ = |0⟩|0⟩

• Maximally entangled states

or ∼ = |0⟩|0⟩+ |1⟩|1⟩

• Less entangled states (non-unitary matrices)

∼

More tangling – less entanglement!



Quantum Entanglement and Topology

Unitarity and topology

Hermitian conjugation amounts to inverting the diagram exchanging
undercrossings and overcrossings( )†

= =⇒ =

Braiding is a natural unitary operation. However,( )†

= and ̸=

No natural inverse topological operation to undo the tangling. Finally,

diagrams like are projectors



Quantum Entanglement and Topology

Entanglement conversion

Maximally entangled state can be converted to any state in the same SLOCC
class with certainty

• Local unitaries do not affect entanglement

=

• Local stochastic operation can only be undone probabilistically

=

One can apply such an operation but one cannot undo such an operation

Nonmaximally entangled state can be converted to a state with higher
entanglement only probabilistically



Homework Problems

• Verify that for SU(2) Chern-Simons and fundamental Wilson lines

log

[ ]
= log 2

• Compute the coefficient of the following states in the computation
basis |0⟩ and |1⟩:

Verify the statements about their entanglement properties


