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Plan of the Second Lecture

1. TQFT
2. Topological quantum mechanics

3. Quantum entanglement



Categorification

Basics of category theory

Category theory is a general the-
ory of mathematical structures and
their relations.
U

o

e forf: A — Bandg: B — C dcompositiongof:A— C
® VA3l 1p:A —>Asuchthatfoly =forlyog=g

® composition is associative ho (gof) = (hog)of

>

Each category consists of
® objects A, B, ...
® morphismsf:A — B, ...

Axioms

Fundamental example: Vect — linear spaces and linear maps



Categorification

Cobld] — cobordism category in d dimensions

® objects — codimension-one oriented surfaces X in d dimensions

® morphisms M : 3; — 3, — dimension d manifolds with
boundary OM = ¥p U ¥, where ¥ is ¥ with inverted orientation

QIO

Identity 1y is a “cylinder” X x [

Composition



Categorification

Functors — maps between categories

Each functor F includes
® identification of objects F(A) = A
¢ identification of morphisms F(g) = G
Axioms (F preserves the structure of the category)
® F(1a) = lpu
® F(f:A— B)=F(f) : F(A) — F(B)
® F(gof)=F(g)oF(f)
Topological Quantum Field Theory (TQFT) in d dimensions is a

functor between the category of cobordisms Cob|d] and the category
of vector spaces Vect



Categorification

Formal definition [Atiyah’89]

¢ Functor Z from Cob|d] to Vect:

1. (d — 1)-dimensional ¥ — vector space Hy, = Z(3)

2. d dimensional M, ¥ = OM — vector |¢p) = Z(M) € Hx

3. VX, % and M, OM = %; U ¥y, — linear map
U=2ZM):Z(%Z,) = Z(%)

Hy, are Hilbert spaces and states |¥) in these Hilbert spaces are en-
coded by different d-manifolds glued to X



Categorification
Atiyah’s axioms

® M with no boundary is a state in a trivial Hilbert space (single point).
M — C-number

In particular, there is an obvious scalar product

f\ Wle)

® There is an identity operator, which corresponds to a featureless
cylinder connecting a pair of ¥

LD -

Z(Z1UX,) = Z(%)) ® Z(%,) for a disjoint union

0 ©E T — un 00Uy,



Chern-Simons Theory
Explicit map

® The previous construction is a definition of a functor Z relating
categories of topological and linear spaces

® One explicit realization of such a functor is given by partition functions
of Chern-Simons theories (path integrals)

Scs[M] =

An

2
dPx VP Tr <A#8,,Ap + 3AuAl,Ap>

Consider 3D space M with boundary ¥. Then a state is

WD) = / DA eiSesiM]
A(D)=As;

Scalar product (composition)

(®|T) /DAE/DA‘ / ‘ eiScs[MIUM]
A(Z)=Ax A(D)=Ax



Chern-Simons Theory

Specific model

We will be working with SU(2) Chern-Simons theory on 3-manifolds with
multiple ¥ = S? boundaries. Hilbert space H = Hgp @ He @ - - -

O @ @

It turns out dim Hg = 1
® Need to make holes (¥ = S?\{P;}) 0N @

® Minimum working example — §? with 4
punctures — qubit



Chern-Simons Theory

Qubit

Punctures are non-dynamical particles characterized by irreps J of su(2) in
WZW theory

® A non-trivial H, exists if ®/J; contains trivial irreps
e dim #, is the number of trivial irreps

For 4 particles in spin 1/21irrep2 ®2®2®2=5¢3®303®01d 1,50
dimH =2 |0) ~ 1) ~ -

Irreps of su(2)x are a bit different from irreps of su(2) — some irreps might be trivial



Chern-Simons Theory

Scalar products

To compute an overlap of two qubit states one has to glue two 3-balls along
the boundary 2-sphere:

(I

Expectation value of the Wilson loop operator in S* (Jones polynomial)

Multiqubits

< | > B ‘! = Z(S*xS"sRi, Ro, R3, Ry)

The resulting space is a higher order topology (S* x S')



Topological Quantum Mechanics

1D TQFT

Let’s try to construct a 1D example

b)) just collec-
are just cotiec What are the

oot f point ) p
‘ tons. of pornts vectors in H? [Y) = :\/\D

(on a line)
Vectors in H are all ways of connecting points (on the right of the line) and
their linear combinations
® How does one compute inner product in this space?

Glue bra and ket!

=Wl (@) = &C:

bra: Flip the diagram
(exchange undercross-
ings and overcrossings)

&l

The result has no open ends, so it is not a vector, but a number



Topological Quantum Mechanics
Basis

® What is the dimension of H?

Fix it by requiring that H{ can be spanned by diagrams that connect points
without intersection (Temperley-Lieb basis). For example, for 4 points,

leo) = g ) le1) = 9

For this to make sense we need linear relations for the intersections. We will
require that

ST -4 DC 4

® Note that the number of points must be even

® For 2n points the number of the basis diagrams is

2n)!
(21) T = 1,1,2,5,14,... (Catalan numbers)

At = D)



Topological Quantum Mechanics

Calculus
Temperley-Lieb basis is not orthonormal. Use Gram-Schmidt procedure

B 1 D 1 (eoler) D
h=—t=35. N(:D— 0 :,)

How does one compute the overlaps?

ey = . ey = D, (el = ©

Require that these are given by the ‘Jones’” polynomials of the diagrams
* Jones polynomial of a trivial circle J(O) = d
® Forany link £, J(OQUL) = d-J(L)

For the rest use skein relations. Consistency condition: d = —A? — A~2



Topological Quantum Mechanics

Further comments

Dimension revisited: Compute the Gram matrix
det{e;lej) = d*(d* —1)

The dimension is 2 unless d = 0, 1. In general

. . v
dimH,, = C,, if k>n—1 <d:—2cosk+2>

This 1D TQFT is equivalent to SU(2); Chern-Simons theory

107 @ - T



Quantum Entanglement

In ordinary quantum mechanics

Consider a multipartite system H = H; ® Hy ® .. ., state |¥) € H and its
density matrix
=) (Y

Let us define the reduced density matrix for subsystem H
p1=Tr Ha, Hs, (p)

® 7, is not entangled with (separable from) the rest of H if
p1 = |¥1) ® (U, for some |¥;)

® otherwise, H, is entangled

Example: in the EPR (Bell) state one has a pair of entangled spins

Lanelh+ine )

|W12) = 7



Quantum Entanglement

Von Neumann (entanglement) entropy
H=Ha®@Mp: S = —Tralpalogpa),  pa=Trz(p)

von Neumann entropy is a measure of entanglement

Replica trick: Compute instead (Rényi entropies)

1
Sy = T log Tra (p")

Analytically continue in 7 and find S in the limit n — 1

Example

) (12 0 1 1y
EPR: pA—< 0 1/2>, Sy = 1_nlog(22n>—log2



Quantum Entanglement

SLOCC classification

States with different entanglement properties are suitable for different
quantum tasks. General problem: classify different types of entanglement

® There is a partial classification known as SLOCC (Stochastic Local
Operations and Classical Communication)

For the local separation H = Hy, ® --- ® Hy, SLOCC classes are orbits of
the action of SL(N;) ® - - - ® SL(N,):

CNI ®...®(CNU
SL(N1) ® - - - @ SL(N,)

For 2 qubits — two SLOCC classes: separable and entangled (Bell)

® For two-partite H = C™ x C", with m > n, there are n classes

For three qubits there four classes: separable, Bell, GHZ and W

® For four qubits or three qutrits: no finite classification



Quantum Entanglement

Two-partite systems
Consider the situation H = C™ x C", withm > n

® The reduced density matrix p,, or p, can have at most rank n
n
Schmidt: p = Y M), A >0
i=1

The SLOCC class is determined by the number of A; # 0

® Local unitary operations do not change the von Neumann entropy
(preserve entanglement)

® Local invertible operations will in general decrease the entropy

General result: Local operations can convert states with more entanglement
into states with less entanglement with certainty, but only probabilistically in
the opposite direction



Quantum Entanglement and Knots

Entanglement: quantum vs topological

It seems quite natural to interpret entanglement as a sort of knotting or
linking. In 1997 Aravind suggests the following:

0EPRstate:w:%(|T)®\i>+!¢>®|T>)

* GHZ state: ¢ = —5 (| 111) + [ 1)

Here a circle corresponds to a spin, while linking of circles is
entanglement of spins



Quantum Entanglement and Topology

What does entanglement mean in terms of topology?
The bra-ket notation is highly suggestive: separable p = |¥)(J|

Consider ¥ = ¥4 U Xp. Two classes of states (3D topologies):

C o D % D
) = oy =\ )

® |T,) is always separable T AT
. ——
® Separability of |¥;) depends on dim H

Entanglement = space? Space emerges from entanglement? ER=EPR?



Quantum Entanglement and Topology

Replica trick [Dong,Fradkin,Leigh,Nowling’08]

® compute Tr p)} S = _d% Tr p

n=1

(Unnormalized) density matrices for states |¥;) and |¥;)

’ -

Normalized reduced density matrices

o B -
p1<A>[v]l pd) = | |1




Quantum Entanglement and Topology

Entanglement entropy

Tr ()" =1, T (p)" =

Consequently,

Se(p1) = 0,  Se(p) = 10%[ \

The entropy of |¥,) is computed by a topological invariant on ¥ x S'. The
value depend on the features of topology

® One can guess that

log l %‘“‘hﬂl 1 = logTrI = logdimHy



Quantum Entanglement and Topology

Space wiring (Preliminary classification)
The amount of entanglement is characterized by the topology:

® separable states

£q ~ TFTT -

® Maximally entangled states

5
I

TE2F57 - o))+ Iy

® Less entangled states (non-unitary matrices)

—
SRR

More tangling — less entanglement!



Quantum Entanglement and Topology

Unitarity and topology

Hermitian conjugation amounts to inverting the diagram exchanging
undercrossings and overcrossings

T
(5_\/:)::\;./: I N i

1]

— ————

Braiding is a natural unitary operation. However,

t
- .| I N —
— = +—— and i #

No natural inverse topological operation to undo the tangling. Finally,

diagrams like S are projectors



Quantum Entanglement and Topology

Entanglement conversion

Maximally entangled state can be converted to any state in the same SLOCC
class with certainty

® [ocal unitaries do not affect entanglement

|
i

® Local stochastic operation can only be undone probabilistically

.:)(_._._._

——— =

i

One can apply such an operation but one cannot undo such an operation

Nonmaximally entangled state can be converted to a state with higher
entanglement only probabilistically



Homework Problems

® Verify that for SU(2) Chern-Simons and fundamental Wilson lines

4\“,,‘} ] = log2

® Compute the coefficient of the following states in the computation
basis |0) and |1):

B b —1 ot
Hd B9  —

log

Verify the statements about their entanglement properties



