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Main Goals

• Introduce a correspondence between Quantum Mechanics and
Topological Spaces

• Introduce Topological Quantum Field Theories with elements of Knot
Theory

• Demonstrate how concepts of Quantum Mechanics can be appear in
the topological interpretation and how the construction can be useful
beyond Quantum Entanglement



Lecture Plan

1. Introduction to knot theory

2. Topological quantum mechanics and quantum entanglement

3. Applications in quantum mechanics, quantum information and
‘quantum gravity’



Plan of the First Lecture

• Introduce basics of knots and their invariants

• Give examples of methods of computing topological invariants



Basics of Knots

What is a knot?

Knot is an embedding of a circle in 3D, K : S1 → R3. For example,

K : −→

Link is an embedding of multiple circles L : S1 × S1 × · · · × S1 → R3

Knot diagram is a projection from 3D to a 2D plain, which preserves the
information about the “topological order” in the crossings

−→



Basics of knots

Equivalence relation

Two knots are called homeomorphic (isotopic) if they can be transformed
into each other without cutting lines

Theorem [Alexander, Briggs’26; Reidemester’27]

Two diagrams of the same knot can be transformed into each other (up to a
planar isotopy) through the following 3 Reidemeister moves:

I move II move III move



Basics of Knots

Reidemeister moves



Basics of Knots

Main problem of knot theory

• How many knots are there? • How can we distinguish two
knots? [Thistlethwaite,Ochiai, Wikipedia]

• Can we tell if a knot is trivial
(unknot)?

Possible solution: construct a function of knot i(L) that is an invariant of the
topology, that is i(L̂) = i(L) if L̂ and L are isotopic



Topological Invariants of Knots

Invariant function

i : −→ C ,C[t] ,C[t, q]

One can hope that such a function will

• distinguish the trivial knot (unknot)

• distinguish any two knots/links that are not isotopic

• be efficiently calculable



Topological Invariants of Knots

Brief history of knot invariants

• Gauss linking number – beginning of the XIX century i(L) ∈ Z

• Alexander (Conway) polynomial – 1923 (1969) i(L) ∈ C[t]
• Jones polynomial – 1984 i(L) ∈ C[q]
• HOMFLY (PT) polynomial – 1985 (1987) i(L) ∈ C[a, z]

• Khovanov homology – 1990s

• de Floer homology – 2003

It is known that homologies can detect an unknot. It is believed that
HOMFLY-PT can distinguish any pair of nonisotopic knots



Topological Invariants of Knots

Topological invariants in physics

• Gauss law: integral of the electric flux through a closed surface counts
the amount of charge enclosed by the surface:

Q =

∫
S

d2n · E

• Ampere’s law: circulation of the magnetic field in a circuit counts the
amount of current enclosed by the circuit:∮

C
B · dl = µ0

∑
k

Ik

In these examples, the results do not depend on the geometry of the problem:
surface S ( circuit C) can be arbitrarily deformed, unless it crosses charges
(currents)



Topological Invariants of Knots

Gauss linking number

• Let us consider a current I running in circuit γ1

• At point x⃗ current circuit γ1 creates a magnetic field (Biot-Savart)

B⃗(⃗x) =
µ0I
4π

∮
γ1

d⃗y × (⃗x − y⃗)
|⃗x − y⃗|3

, y⃗ ∈ γ1

• At points x⃗ ∈ γ2 use the Ampere’s law:∮
γ2

B⃗ · d⃗x =
µ0I
4π

∮
γ2

∮
γ1

(d⃗y × [⃗x − y⃗]) · d⃗x
|⃗x − y⃗|3

= µ0I δγ1,γ2

δγ1,γ2 = ±1 if there is a linking between the circuits (otherwise it is 0)

Lk ≡ δγ1,γ2 =
1

4π

∮
γ2

∮
γ1

(d⃗y × [⃗x − y⃗]) · d⃗x
|⃗x − y⃗|3

(Gauss linking number)



Topological Invariants of Knots

How to calculate the linking number?

• Choose directions in the loops

• Associate ±1 to each crossing according to

• Calculate the sum of ±1 at crossings and divide by 2

Lk = −1 Lk = 0 Lk = 1 Lk = 2



Topological Invariants of Knots

Unlinking problem

Number Lk has a relatively low sensitivity to the topology. For example, the
same value is obtained for

and

Besides, Lk applies only to 2-component links



Topological Invariants of Knots

Artin’s braid group

Braid group Bn is a generalization of the symmetric group Sn (permutations).
It can be defined in terms of generators:

Bn ≡ {bk, k = 1, . . . , n − 1| bibi+1bi = bi+1bibi+1, i = 1, . . . , n − 2;
bibj = bjbi, |i − j| > 1}

This definition has a representation on n-strand diagrams:

• identity

• generators and inverse

• multiplication=concatenation



Topological Invariants of Knots

Braids and knots

Theorem [Alexander’23] Any knot or link can be obtained as tracelike
closure of some braid

We can associate the following expression to the above knot

Tr
[
U−1

1 U−1
1 U2U2U−1

1 U2U1U−1
2 U−1

1 U−1
1

]
where Uk is some representation of the braid group generators

• One would like Tr to respect isotopies of the knot, i.e. be an invariant



Topological Invariants of Knots

Markov trace

A function of the braid with the following properties produces a knot
invariant:

1. (cyclicity) given braids α and β

Tr αβ = Tr βα

2. (Markov property) for β ∈ Bn consider
β · bn ∈ Bn+1, then

TrBnβ = TrBn+1β · bn

Jones (1984) realized that he knows traces with similar properties in the
context of type II1 von Neumann algebras −→ Jones polynomial J(K)



Topological Invariants of Knots

Skein relations [Conway’60s]

• Some topological invariants (Jones polynomials) satisfy linear relations

J


 = q2 J


 − q

(
q2 − q−2) J




Consecutively applying the skein relations the diagram can be reduced to a
linear combination of simpler diagrams, eventually to

• J(◦) = 1

• J(K ∪ ◦) = −(q2 + q−2)J(K)



Topological Invariants of Knots

Calculus for the trefoil knot

Alternative version of the skein relations (Kauffman)

= A + A−1

For the trefoil 31 (A4 = q)

= +A A-1 =

+A2 + +A-2

+

A3 +

(2-A-2(A2+A-2))

= A

( + )A-1A = (1+A4)(A3+A−5−A−9)

= A7(1 + A4)J31(A
−4)



Matrix representation

Braid group

Consider matrix R : V2 ⊗ V2 → V2 ⊗ V2

R =


A

0 A−1

A−1 A − A−3

A


The following set of matrices generate the braid group:

b1 = R ⊗ I2 ⊗ I2 ⊗ · · ·
b2 = I2 ⊗ R ⊗ I2 ⊗ · · ·
b3 = I2 ⊗ I2 ⊗ R ⊗ · · ·

· · ·

Here one associates a line (strand) to every copy of space V2 (that is to I2)



Matrix representation

Markov trace

Markov trace can be defined as follows. First, define qH : V2 → V2:

qH =

(
−A2

−A−2

)
Then the trace

TrMX = Tr
(
(qH)⊗nX

)
.

will respect Markov’s properties and will be consistent with the following
definition of the Jones (Kauffman bracket) polynomial:

• J(◦) = d

• J(K ∪ ◦) = d · J(K)

• = A + A−1

Simple self-consistency: d = Tr MI2 = −A2 − A−2



Matrix representation

Temperley-Lieb algebra

TL algebra can be defined in terms of generators:

TLn ≡ {uk, k = 1, . . . , n − 1| u2
k = d · uk, k = 1, . . . , n − 1;

uiuj = ujui, |i − j| > 1;
uiui+1ui = ui, i = 1, . . . , n − 2;
ui+1uiui+1 = ui+1, i = 1, . . . , n − 2}

This definition also has a representation on n-strand diagrams:

uk = · · · · · · u2
k = · · · · · · = d · · · · · · ·

TL3 = span

 , , , ,





Matrix representation

TL and braid group

Exercise: If uk are generators of TLn algebra and d = −A2 − A−2 then

bk = A I+ A−1uk

are generators of braid group Bn.

Recall the skein relation!

= A + A−1

Hence, we have a matrix representation for the TL algebra

U ≡ = A R − A2 I4 =


0

−A2 1
1 −A−2

0





Matrix representation

Jones polynomials beyond Markov

• Trace on the TL algebra induces a trace on the braid group and vice
versa

With operator U we can also compute nontracial closures of braids:

∼ U ⊗ U

This will be the basis of our quantum mechanics construction



Matrix representation

Jones polynomials as matrix elements

It is interesting to be able to cast closures as matrix elements

= ⟨Ψ|B|Φ⟩

Think of U as

U ≡ = |u⟩⟨u| , for some |u⟩ ∈ V2 ⊗ V2

Possible solution:
|u⟩ = ±(0, iA,−iA−1, 0)

To be precise, this would give correct U if |u⟩ ≡ ⟨u|. No conjugation!



Matrix representation

Pseudounitary representation

• Let us assume that A = eiθ. In particular, A∗ = A−1

Note that R† ̸= R−1

• Introduce

Σ =

(
1

1

)
Then

(Σ⊗ Σ)R†(Σ⊗ Σ)† = R−1

Σ is a metric on V2. This conjugation is equivalent to real transposition of
vectors: ⟨u| ≡ (|u⟩)†Σ = (|u⟩)T

|u⟩ = , ⟨u| = , |u⟩ ⊗ |u⟩ = , . . .



Knots and Quantum Field Theory

Chern-Simons theory

3D theory with gauge group SU(N):

S =
k

4π

∫
d3x ϵµνρ Tr

(
Aµ∂νAρ +

2
3

AµAνAρ

)
• Equations of motion tell that the physical fields are trivial:

Fµν ≡ ∂µAν − ∂νAµ + [Aµ,Aν ] = 0

– field configurations are pure gauges

• CS theory is topological because S does not depend on metric. As a
result, it has vanishing energy-momentum tensor

Tµν ∝ δS
δgµν

= 0



Knots and Quantum Field Theory

Particles

Among the gauge transformations of CS some are singular. They slightly
modify equations of motion:

Fa
µν ∝ Taϵµνρ

dxρ

ds
δ(⃗x − x⃗(s))

This can be viewed as coupling of gauge fields to curves (particle worldlines)

The theory has some nontrivial observables: expectation values of Wilson
loops

• Wilson loop operator (for a given closed contour L)

W(L,R) = TrR P exp

(∮
L

Aµdxµ
)

• Its expectation value is computated in the standard fashion:

⟨W(L,R)⟩ =

∫
DAµ W(L,R)eiS[A]∫

DAµ eiS[A]



Knots and Quantum Field Theory

Jones polynomials

Witten (1988): expectation values of Wilson loop operators in
Chern-Simons with group SU(2) calculate Jones polynomials:

JL,R(q) ∼ ⟨W(L,R)⟩k,SU(2) , q = e
2πi
k+2 (A = q1/4)

• the original Jones polynomials correspond to the choice of the
fundamental representation

• for arbitrary R one obtains a generalization known as colored Jones
polynomials

• for SU(N) the polynomials are HOMFLY-PT



Knots in 3D Manifolds

Quantization

It is the simplest to quantize CS theory on Σ× S1, for Riemann surface Σ

• In the Coulomb gauge A0 = 0 the action is quadratic:

S ∼
∫

d3x Aa
1Ȧa

2

• There is a Gauss constraint

Fa
12 = 0

What are the available phase space configurations satisfying the constraint?

• The answer depends on the topology of Σ



Knots in 3D Manifolds

Sphere and other topologies

Monodromies (traces of the Wilson loops) are the most generic gauge
invariant observables

• On the sphere S2 there are no nontrivial monodromies: the quantization
leads to a trivial Hilbert space

dimHS2 = 1
• On the torus T2 the nontrivial degrees of freedom correspond

monodromies along the noncontractible cycles

• Integer coupling constant k limits the number of possible windings. For
SU(2)

dimHT2 = k + 1
• For arbitrary genus

dimHMg = (k + 2)g−1
k∑

j=0

sin

(
πj

k + 2

)2−2g



Knots in 3D Manifolds

Adding particles to S2

Nondynamical particles are charges sourcing the gauge fields:

Fa
µν ∝ Taϵµνρ

dxρ

ds
δ(⃗x − x⃗(s))

• The nontrivial monodromies can wind around the charges
(charge≡representation)

• On a closed manifold the consistency of the monodromies requires the
total charge (total spin) to vanish

• The dimension of the Hilbert space corresponds to the number of the
ways the representations can form a singlet

R1 ⊗ R2 ⊗ · · · ∋ R∅, fusion algebra: Φi ⊗ Φj = ⊕kNk
ijΦk

Number of charges 0 1 2 3 4
dimHS2 1 δ R

∅ δ R2
R1

NR3
R1R2

· · ·



Knots in 3D Manifolds

Simple partition functions

Compute CS path integral on Σ× S1

−→

• Since the Hamiltonian H = 0, the path integral
looks like a computation of a trace of the
identity operator on HΣ

Z(Σ× S1) = Tr HΣ
I = dimHΣ

This also applies to S2 with charges Z = Tr HΣK

For an evolution generated by a map K, Z computes its trace



Knots in 3D Manifolds

In the matrix presentation
• Consider SU(2) theory with charges j = 1/2 irreps

• The naive calculation of the trace

Tr

  = 16

• Markov trace Tr M computes the invariant in S3 and yields d4

Can we get the invariant in Z(S2 × S1)?

• In the next lecture we will construct appropriate projectors P2 (or PHΣ

in general), so that

Tr PHΣI = dimHΣ and Tr PHΣK – invariant on S2 × S1



Homework Exercises

1. If uk are generators of TLn algebra and d = −A2 − A−2 then

bk = A I+ A−1uk

are generators of braid group Bn.

2. Calculate the Jones polynomial of the figure-eight knot using skein
relations in Kauffman’s conventions

3. Calculate the same invariant using matrix representation as the Markov
trace of a braid

4. Calculate the same invariant using matrix representation as a matrix
element of a braid


