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Main Goals

® Introduce a correspondence between Quantum Mechanics and
Topological Spaces

® Introduce Topological Quantum Field Theories with elements of Knot
Theory

® Demonstrate how concepts of Quantum Mechanics can be appear in
the topological interpretation and how the construction can be useful
beyond Quantum Entanglement



Lecture Plan

. Introduction to knot theory
. Topological quantum mechanics and quantum entanglement

. Applications in quantum mechanics, quantum information and
‘quantum gravity’



Plan of the First Lecture

® Introduce basics of knots and their invariants

® Give examples of methods of computing topological invariants



Basics of Knots

What is a knot?

Knot is an embedding of a circle in 3D, K : S! — R3. For example,
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Link is an embedding of multiple circles £ : S! x S' x --- x S — R3

&

Knot diagram is a projection from 3D to a 2D plain, which preserves the
information about the “topological order” in the crossings
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Basics of knots

Equivalence relation

Two knots are called homeomorphic (isotopic) if they can be transformed
into each other without cutting lines
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Theorem [Alexander, Briggs’26; Reidemester’27]

Two diagrams of the same knot can be transformed into each other (up to a
planar isotopy) through the following 3 Reidemeister moves:
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I move II move III move




Basics of Knots

Reidemeister moves
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Basics of Knots

Main problem of knot theory
® How many knots are there?
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® How can we distinguish two
KknotS?  [Thistethwaite,Ochiai, wikipedia]

%)

® Can we tell if a knot is trivial
(unknot)?

Possible solution: construct a function of knot i(L£) that is an invariant of the
topology, that is i(£) = i(£) if £ and L are isotopic



Topological Invariants of Knots

Invariant function
iZ ( /\2> — (C,(C[t],(C[t,q]

One can hope that such a function will
® distinguish the trivial knot (unknot)
® distinguish any two knots/links that are not isotopic

® be efficiently calculable



Topological Invariants of Knots

Brief history of knot invariants

® Gauss linking number — beginning of the XIX century i(L)eZ
® Alexander (Conway) polynomial — 1923 (1969) i(L) € Clt]
® Jones polynomial — 1984 i(L) € Clg]
e HOMFLY (PT) polynomial — 1985 (1987) i(£) € Cla, 7]

Khovanov homology — 1990s

de Floer homology — 2003

It is known that homologies can detect an unknot. It is believed that
HOMFLY-PT can distinguish any pair of nonisotopic knots



Topological Invariants of Knots

Topological invariants in physics

® Gauss law: integral of the electric flux through a closed surface counts
the amount of charge enclosed by the surface:

0 = /dzn-E
S

® Ampere’s law: circulation of the magnetic field in a circuit counts the
amount of current enclosed by the circuit:

fBa—wdn
¢ k

In these examples, the results do not depend on the geometry of the problem:
surface S ( circuit C) can be arbitrarily deformed, unless it crosses charges
(currents)



Topological Invariants of Knots

Gauss linking number

® Let us consider a current / running in circuit y;

® At point X current circuit y; creates a magnetic field (Biot-Savart)

" 1 dyx (¥X—5
B = W EEED e,
4r |, |X— 7

® At points X € 7y, use the Ampere’s law:

. uolj{ j{ (@ x [¥—3]) - d
= = ILL()I(S ,
‘7{/2 Y2 I |x—y‘3 I

0+,,~4, = £1 if there is a linking between the circuits (otherwise it is 0)

(dy x [x —
Lk = 6,4, = j{ j{ yx ¥ _,ﬂ) (Gauss linking number)
7 471- Y2 M |x_ |3



Topological Invariants of Knots

How to calculate the linking number?

® Choose directions in the loops

® Associate £1 to each crossing according to

T - 1

— s | —|> —

® Calculate the sum of +1 at crossings and divide by 2

(W OO O O

Lk= -1 Lk=0 Lk=1 Lk=2



Topological Invariants of Knots

Unlinking problem

Number Lk has a relatively low sensitivity to the topology. For example, the
same value is obtained for

00 -

Besides, Lk applies only to 2-component links



Topological Invariants of Knots

Artin’s braid group

Braid group B, is a generalization of the symmetric group S, (permutations).
It can be defined in terms of generators:

Bn = {bk, k= 1,...,”— 1‘ b,‘bprlbl' = b,‘+1b,‘bi+1, = 1,...771—2;
b,’bj = bjbi, |l—J‘ > 1}

This definition has a representation on n-strand diagrams:

® identity
] ] 1 [ [ ® multiplication=concatenation
’ \
® generators and inverse b,b,= \[
bk =

I

K1 k2 1 2kl

12



Topological Invariants of Knots

Braids and knots

Theorem [Alexander’23] Any knot or link can be obtained as tracelike
closure of some braid

oS A
o/ e
We can associate the following expression to the above knot
Tr [U;' U U007 0,005 U O

where Uy is some representation of the braid group generators

® One would like Tr to respect isotopies of the knot, i.e. be an invariant



Topological Invariants of Knots

Markov trace

A function of the braid with the following properties produces a knot
invariant:

1. (cyclicity) given braids « and 3

111

Traf = Tr Ba
2. (Markov property) for 8 € B, consider
B b, € B,11, then l
ss &}

TI'B“ﬁ = Tr3n+lﬁ . bn

Jones (1984) realized that he knows traces with similar properties in the
context of type II; von Neumann algebras — Jones polynomial J(K)



Topological Invariants of Knots

Skein relations [Conway’60s]

® Some topological invariants (Jones polynomials) satisfy linear relations

a X - q" X = @99 )(

(- I~ ) ~

J =qJ —q(-q?%)J

Consecutively applying the skein relations the diagram can be reduced to a
linear combination of simpler diagrams, eventually to

° J(o)=1
* J(KUo)=—(¢*+q )JI(K)



Topological Invariants of Knots

Calculus for the trefoil knot

Alternative version of the skein relations (Kauffman)

> =4 DOC +a

For the trefoil 3; (A* = g)

+(2-A‘2(A2+A'2))(A®+A‘1© O) = (1444 (A% +A7-A7?)

=AT(1 + A5, (A7)



Matrix representation

Braid group

Consider matrix R: V, @ V, = Vo, ® Vs
A
0 Al
Al A—A3
A

The following set of matrices generate the braid group:

by = RILIL®---
b, = LRIRRIL®: -
by = LRILOR®---

Here one associates a line (strand) to every copy of space V; (that is to I)



Matrix representation

Markov trace

Markov trace can be defined as follows. First, define g : V, — Vi:

—A?
qH = < _A—Z >

TrmX = Tr ((¢")®"X) .

Then the trace

will respect Markov’s properties and will be consistent with the following
definition of the Jones (Kauffman bracket) polynomial:

® J(o)=d
e J(KUo)=d-J(K)
e > =4 D(C +a

Simple self-consistency: d = Tr g, = —A? — A2



Matrix representation

Temperley-Lieb algebra
TL algebra can be defined in terms of generators:
TL, = {u, k=1,....n—1  wj=d w,k=1,...,n—1;
Uil = Ujll, |l —‘]‘ > 1;
Uil = U, i =1,...,n—2;

Uip1 Uil = Uip1, i =1,...,n—2}

This definition also has a representation on n-strand diagrams:

S0 A R B

w = | 0 02 = U

] H

TL; = span ,

U UF@
Ol 10 la n




Matrix representation

TL and braid group
Exercise: If u; are generators of 7L, algebra and d = —A? — A~2 then

by = AT+ A"

are generators of braid group B,,.

Recall the skein relation!
X =allva R

Hence, we have a matrix representation for the TL algebra

U = U _ AR - A1, =

1 —A"2
M 0



Matrix representation

Jones polynomials beyond Markov

® Trace on the TL algebra induces a trace on the braid group and vice
versa

With operator U we can also compute nontracial closures of braids:

> € o

D)

This will be the basis of our quantum mechanics construction




Matrix representation

Jones polynomials as matrix elements

It is interesting to be able to cast closures as matrix elements

ijq/ xp} ~ (v|Bjo)

Think of U as

U= DC = |u)yl, for some lu)y € Vo, @ V

Possible solution:
lu)y = £(0,iA, —iA~",0)

To be precise, this would give correct U if |u) = (u|. No conjugation!



Matrix representation
Pseudounitary representation

® Let us assume that A = ¢. In particular, A* = A~

Note that RT # R™!
1
== ")

Teo)RI(ZeX) = R7!

® Introduce

Then

3 is a metric on V,. This conjugation is equivalent to real transposition of
vectors: (u| = (Ju))TE = (|u))”



Knots and Quantum Field Theory

Chern-Simons theory
3D theory with gauge group SU(N):

k 2
S = 4~ / d’x € Tr (A#ayAp + 3ANA1,AP>

® Equations of motion tell that the physical fields are trivial:
Fo = 04A, —0,A,+[ALA)] =0

— field configurations are pure gauges

® CS theory is fopological because S does not depend on metric. As a
result, it has vanishing energy-momentum tensor

oS
T x —— =
oghv



Knots and Quantum Field Theory

Particles

Among the gauge transformations of CS some are singular. They slightly
modify equations of motion:

a a dx? = =
Fl, o< T, N d(X — X(s))

This can be viewed as coupling of gauge fields to curves (particle worldlines)

The theory has some nontrivial observables: expectation values of Wilson
loops

® Wilson loop operator (for a given closed contour £)
W(L,R) = TrgPexp <]£ Audx">
c

® [ts expectation value is computated in the standard fashion:

[ DA, W(L,R)eSH
<W(‘C’R)> - fDA,u eiSIA]




Knots and Quantum Field Theory

Jones polynomials

Witten (1988): expectation values of Wilson loop operators in
Chern-Simons with group SU(2) calculate Jones polynomials:

27i

Jer(q) ~ (W(L,R))isue) » g = e (A=q'%

® the original Jones polynomials correspond to the choice of the
fundamental representation

e for arbitrary R one obtains a generalization known as colored Jones
polynomials

e for SU(N) the polynomials are HOMFLY-PT



Knots in 3D Manifolds

Quantization
It is the simplest to quantize CS theory on ¥ x S!, for Riemann surface ¥

® In the Coulomb gauge Ay = 0 the action is quadratic:
S~ / d>x AYAS
® There is a Gauss constraint

Fiy =0

What are the available phase space configurations satisfying the constraint?

® The answer depends on the topology of >



Knots in 3D Manifolds

Sphere and other topologies

Monodromies (traces of the Wilson loops) are the most generic gauge
invariant observables

® On the sphere S? there are no nontrivial monodromies: the quantization

leads to a trivial Hilbert space
dim H 2 = 1

® On the torus 7 the nontrivial degrees of freedom correspond
monodromies along the noncontractible cycles

® Integer coupling constant k limits the number of possible windings. For
SU(2)

d1m HTz = k + 1
® For arbitrary genus

k .\ 2-2¢
dimHpm, = (k+2)g_lj§:;sin (k7—T|—J2>



Knots in 3D Manifolds

Adding particles to S?

Nondynamical particles are charges sourcing the gauge fields:

ax’ ..
F, o T"ewpgﬂx—x(s))

® The nontrivial monodromies can wind around the charges
(charge=representation)

® On a closed manifold the consistency of the monodromies requires the
total charge (total spin) to vanish

® The dimension of the Hilbert space corresponds to the number of the
ways the representations can form a singlet

RI®R,®--- 3 Ry, fusion algebra: ®; @ ®; = @kNi/;-CI)k

Number of charges ‘ 0
dim H |1



Knots in 3D Manifolds

Simple partition functions

Compute CS path integral on ¥ x S!

=-0 T

® Since the Hamiltonian H = 0, the path integral
looks like a computation of a trace of the
identity operator on Hyx,

Z(E x SY) = Try, I = dimHsx
This also applies to S> with charges Z=TruK

For an evolution generated by a map K, Z computes its trace



Knots in 3D Manifolds

In the matrix presentation
® Consider SU(2) theory with charges j = 1/2 irreps

® The naive calculation of the trace

Tr =16

e Markov trace Tr ; computes the invariant in S* and yields d*
Can we get the invariant in Z($? x S')?

¢ In the next lecture we will construct appropriate projectors P (or Py,
in general), so that

Tr Py I = dimHsy and Tr Py, K - invariant on §2 x S



Homework Exercises

. If u; are generators of TL, algebra and d = —A> — A~ then
by = AT+A"'uy

are generators of braid group B,,.

. Calculate the Jones polynomial of the figure-eight knot using skein
relations in Kauffman’s conventions

@®

. Calculate the same invariant using matrix representation as the Markov
trace of a braid

. Calculate the same invariant using matrix representation as a matrix
element of a braid



